1. 步进式电动机
步进电机是将电脉冲信号转变为角位移或线位移的开环控制电机,是现代数字程序控制系统中的主要执行元件,应用极为广泛。。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器。
虽然步进电机已被广泛地应用,但步进电机并不能像普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。
步进电机又称为脉冲电机,基于最基本的电磁铁原理,它是一种可以自由回转的电磁铁,其动作原理是依靠气隙磁导的变化来产生电磁转矩。其原始模型是起源于年至年间。年前后开始以控制为目的的尝试,应用于氢弧灯的电极输送机构中。这被认为是最初的步进电机。二十世纪初,在电话自动交换机中广泛使用了步进电机。由于西方资本主义列强争夺殖民地,步进电机在缺乏交流电源的船舶和飞机等独立系统中得到了广泛的使用。二十世纪五十年代后期晶体管的发明也逐渐应用在步进电机上,对于数字化的控制变得更为容易。到了八十年代后,由于廉价的微型计算机以多功能的姿态出现,步进电机的控制方式更加灵活多样。
步进电机相对于其它控制用途电机的最大区别是,它接收数字控制信号电脉冲信号并转化成与之相对应的角位移或直线位移,它本身就是一个完成数字模式转化的执行元件。而且它可开环位置控制,输入一个脉冲信号就得到一个规定的位置增量,这样的所谓增量位置控制系统与传统的直流控制系统相比,其成本明显减低,几乎不必进行系统调整。步进电机的角位移量与输入的脉冲个数严格成正比,而且在时间上与脉冲同步。因而只要控制脉冲的数量、频率和电机绕组的相序,即可获得所需的转角、速度和方向。
由于步进电机是一个把电脉冲转换成离散的机械运动的装置,具有很好的数据控制特性,因此,计算机成为步进电机的理想驱动源,随着微电子和计算机技术的发展,软硬件结合的控制方式成为了主流,即通过程序产生控制脉冲,驱动硬件电路。单片机通过软件来控制步进电机,更好地挖掘出了电机的潜力。因此,用单片机控制步进电机已经成为了一种必然的趋势,也符合数字化的时代趋。
2. 步进式电动机转速
步进电机的速度是由控制脉冲的频率决定,比如选用驱动器EZM552细分设置为10000脉冲/圈,也就是说驱动器每接收10000个脉冲时,电机就运动一周,如果驱动器接收的控制脉冲频率是10KhZ时,电机运行速度是1RPS或60RPM,以此类推,如果控制脉冲频率是20KHZ时电机运行速度是2RPM,汇总来说,电机的运行速度=控制脉冲频率/细分( RPS)
3. 步进式电动机结构
步进电机是通过脉冲信号来进行控制,每输入一个脉冲信号,步进电机前进一步。步进电机旋转的步距角,是在电机结构的基础上等比例控制产生的,如果控制电路的细分控制不变,那么步进旋转的步距角在理论上是一个固定的角度。在实际工作中,电机旋转的步距角会有微小的差别,主要是由于电机结构上的固定有误差产生的,而且这种误差不会积累。
4. 步进式电动机接线
首先,我们把公共线叫0号线,而把相线分别叫做1、2、3、4号线。把公共线接到电源+12V上,把另外四根线随便先接到相线上去。
2、再次开机,如果风门打开正常就是线接对了。
3、如果步进电机光抖动,不转动,就是相序接反了,只需要把23号线(相邻的两根相线)对倒一下。
4、如果是风门打不开,相反风门还拼命的朝里挤,说明起始位搞错,需要把24号线(相隔的两根相线)对倒一下即可。
5. 步进式电动机其一般工作原理
步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。
这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。
6. 步进式电动机式怠速控制阀组成部件
怠速控制阀位于骨气门体上,怠速工况下,骨气门险些全部封闭
由怠速控制阀控制发动机的怠速时的进宇量怠速控制阀的种类:可分为机器式怠速控制阀、电磁阀式怠速控制阀、旋转阀式怠速控制阀和步进电机式怠速控制阀。
而种种怠速控制阀由于原理和布局的差别,可分为许多种。
7. 步进式电动机应用
步进电机,低速大扭矩设备,使传输更短这意味着更高的可靠性,更高的效率,更小间隙和更低的成本。正是这一特点,使得步进理想的机器人,因为大多数机器人运动是短距离要求高加速度达到低点的循环周期。功率-重量比高于直流电动机低。山社电机认为大多数机器人运动是不是长距离高速(因此高功率),但通常包括短距离的停止和启动。在低转速高扭矩他们是理想的机器人。
所有ST机器人有编码器反馈这是相对于软件电机计数。在其中不能被纠正任何错误的情况下,系统将停止。因此,该系统的完整性要高得多。
所以机器人设计中选用步进电机用到的优点有以下几点:
1对于同等性能的步进电机更便宜。
2步进电机是无刷电机等有更长的寿命。
3作为数字马达就可以准确地定位不打猎或过冲。
4驱动模块不是线性放大器这意味着更少的散热片,更高的效率,更高的可靠性。
5驱动模块比线性放大器比较便宜。
6没有昂贵的伺服控制的电子元件,因为信号直接从MPU起源。
7软件故障安全。主控板问题步进脉冲。如果该软件无法工作或崩溃电机停止。
8电子驱动器故障安全。如遇驱动放大器故障的电机锁固,将无法运行。当伺服驱动器发生故障的电机仍然可以运行,可能在全速运转。
9速度控制精确和可重复的(晶体控制)。
10如果需要,步进电机运行极为缓慢。
8. 步进式电动机有关公式
步进电机是一种将电脉冲信号转换成角位移或线位移的一种器件。在不超载情况下,步进电机的转速和运动距离取决于控制电脉冲的频率和数量。
其控制精度主要由两方面决定:
1、步进电机的每步精度,以2相混合式步进电机为例,一个200步的步进电机在不细分情况下,单步的步距为:360°/200=1.8°,即该步进电机单步行走的最小距离就是1.8°。但实际使用中,一般都会细分步数。以2细分为例,此时步进电机行走两步相当于原来走一步,则现在单步的步距为:360°/(200*2)=0.9°;同理,4细分下,单步步距为:360°/(200*4)
=0.45°;8细分下,单步步距为:360°/(200*8)=0.225°;16细分下,单步步距为:360°/(200*16)=0.1125°;32细分下,单步步距为:360°/(200*32)=0.05625°。所以驱动细分下,步进电机单步步距角计算公式为:360/(步进电机固有步数*细分数)。
由此可见,要减小步进电机单步步距角以达到较高精度,需要从两个方面着手,一是提高或采用固有步数更多的步进电机以获得较小的单步步距角,如0.9°。二是提高步数细分的程度。
2、计算精度,在控制步进电机进行动作时,计算系统在将要移动的角位移或者线位移转换成步进电机步数的计算时应该保证计算精度高于步进电机每步精度。比如说,步进电机每步的步距角为0.1125°,要移动的角位移为143.45°,要走的步数应该为=143°/0.1125°,计算结果为1275.11.....步,实际结果为1275步,移动误差为:0.11111*0.1125
=0.0125°。而如果计算移动的角位移是以1°为单位的,143.45°=143°,小数部分就被舍弃了。143/0.1125=1271.1111步,则比较之前的移动,误差为:(1275-1271)*0.1125°
=0.45°。这里之所以这样提出,主要是因为在嵌入式系统中,因为数据类型的限制,如果不使用float或double来进行计算,则一般都会舍弃掉小数部分,从而造成较大的计算误差。
9. 步进电机
确定步进电机的拉力首先要考虑两个因素,一是步进电机的额定扭矩,二是步进电机输出轴安装的滚轮半径。
举个实例,我们选用一款额定扭矩为2.8牛米步进电机,给它安装一个半径为0.1米的滚轮。根据步进电机扭矩可以计算出在电机输出轴0.1米垂直方向可产生的力为280牛,也就是0.1米半径的滚轮外缘可产生280牛的拉力,经换算相当于28.57公斤的拉力。
- 相关评论
- 我要评论
-