1. 步进电机的负载转矩
步进电机的转速与脉冲频率成正比,即脉冲频率越高步进电机的转速也越高,但提高了脉冲频率虽然达到了提速作用,却损失了力矩。 力矩随脉冲频率升高而下降的原因: 步进电机产生失步的两个原因就是: 一、控制脉冲频率高,此时转子的加速度小于步进电机定子旋转磁场的速度。 在步进电机供电电源设计好后,定子线圈冲电时间常数基本是固定的,假设时间常数是0.02S(0.02S充电到最大值的63%),如果步进电机接受的脉冲周期大于0.04S(占空比为50%,频率小于25HZ),定子线圈即可以获得足够的能量产生足够带动转子的力矩。如果脉冲频率过高,比如50HZ(占空比为50%,脉冲周期大于0.02S),定子线圈获得的充电时间才0.01S,少了一半的充电时间,产生的力矩就减少了很多,致使转子跟不上定子旋转磁场的速度,每一步都落后于应该到达的平衡位置,并且距离平衡位置越来越远。积累下来的结果就造成了失步. 当然50HZ的频率太小了,本例子只是为了便于说明,随意说了一个数解决方法:1、降低脉冲频率,别认为麻烦,调试步进电机大部分是调节脉冲频率的过程 2、如果不想因降低频率而造成速度太低,那么加大步进电机供电电流 3、减轻电机的负载 二、控制脉冲频率低,此时转子的速度高于步进电机定子旋转磁场的速度。 还以上面的0.02S充电时间常数为例,脉冲频率低,定子线圈充电充分,其产生的力矩就大,此时电机的负载如果较轻,转子就会超过应该到达的平衡位置,定子磁场又要拉转子回到平衡位置,同样其在回平衡位置时又会反越过平衡位置而落后于平衡位置,恰恰此时下一个脉冲到来,于是转子只好在落后于平衡位置的地方开始新一轮的步进。如此循环,同样造成每一步都落后于应该到达的平衡位置,并且距离平衡位置越来越远。积累下来的结果就造成了失步。 解决方法:1、提高脉冲频率 2、不想太高速,那么减小步进电机供电电流。 3,上面两者都不能调节,换力矩小的电机。 伺服电机的说明书上一般都会给出矩频特性图,或是力矩与速的关系表。从大多品牌步进电机的矩频特性可以看出,步进电机在小于600转/分的速度时,输出力矩是正常的。超过1000转/分时,力矩急剧下降(当然也有部分电机在1200转/分时,力矩输出正常). 所以将步进电机的最高转速定为600转/分是较为理想的选择。 当然这个600转/分不是一个通用的数据,具体还得去资讯厂家,向厂家要步进电机的矩频特性。 600转/分的定义只是为了告诉您在选择电机或是前期设计转速,要考虑到步进电机转速小的特点!
2. 步进电机的负载转矩小于最大静转矩
80步进电机垂直负载40kg
一般,最大静转矩较大的电机,可以带动较大的负载转矩,负载转矩和最大静转矩的比值通常取为0.3~O.5,即TL=(O.3~0.5)Tjmax,按最大静转矩的值可以把步进电机分为伺服步进电机和功率步进电机,前者输出力矩较小,有时需要经过液压力矩放大器或伺服功率放大系统放大后再去带动负载,而功率步进电机的最大静转矩一般大于0.05Nm,它不需要力矩放大装置就能直接带动负载运动,这不仅大大简化了系统,而且提高了传动精度。
3. 步进电机 转矩
大家都知道步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。那么,有没有知道步进电机的矩频特性呢?下面由信浓步进电机厂家讲述一下:
选择步进电机时,最主要的任务之一就是要详细规定电动机的标称转矩值,一般,最大静转矩较大的电机,可以带动较大的负载转矩,负载转矩和最大静转矩的比值通常取为0.3~O.5,即TL=(O.3~0.5)Tjmax,按最大静转矩的值可以把步进电机分为伺服步进电机和功率步进电机,前者输出力矩较小,有时需要经过液压力矩放大器或伺服功率放大系统放大后再去带动负载,而功率步进电机的最大静转矩一般大于0.05Nm,它不需要力矩放大装置就能直接带动负载运动,这不仅大大简化了系统,而且提高了传动精度。
矩频特性:电动机的性能在很大程度上不仅仅取决于矩角特性的形状,而且取决于矩频特性,首先需要根据前面计算出的脉冲速度和运行需要的转矩,作出速度一转矩曲线,将该曲线与步进电机生产厂家的矩频特性曲线比较,若计算曲线在产品特性之下,则可选择相应的电机和驱动器,步进电机的动态转矩与驱动器的形式有很大的关系,因而选用时必须了解给出的性能指标是在何种型式的电源及驱动下测定的
4. 步进电机的负载转矩是指
您好,进步电机1.2牛米扭矩,在不考虑阻力也没有减速比的情况下,在水平状态下,不使其移动,那应该是能在进电机在不考虑阻力,也没有减速比的情况下,那应该是能推动和它重量质量相同的物体的。进步电机轴上1.2牛米大概输出是10公斤左右。
5. 步进电机的负载转矩公式
第一,在不接任何设备和线的情况下,把步进电机的每根线分开,不要碰线,用手转动转轴,好电机,应该是只需要一定的力,就可以顺利的转动,中间无卡的现象,若中间出现某个位置较卡或完全无法转动时,表明电机已坏,可能是轴承移位,内部转子和定子磨损。损坏原因应为受外力过大导致。可以用万用表量“相邻”两相的阻抗,应该都等于产品给出的线圈阻抗。
如果上设备检测空转时,应该能达到规定的转速,在一般的转速时,发出的噪音应平稳。除此以外就需要带负载测试。具体测试参数就需要结合负载转矩和电机的转矩等。把线都拧到一起,电机越大,拧动所需要的力越大,一般的步进电机根本就无法靠人力拧动。(拧一起的线越多,所需要的力越大。)若无效时,表明线圈坏。
上设备检测,空转时,应该能达到规定的转速,在一般的转速时,发出的噪音应平稳。除此以外就需要带负载测试。具体测试参数就需要结合负载转矩和电机的转矩等。
第二,把线都拧到一起,电机越大,拧动所需要的力越大,一般的步进电机根本就无法靠人力拧动。(拧一起的线越多,所需要的力越大。)若无效时,表明线圈坏。
针对同步电机而言,除了以上的方法外,就是需要仔细观察其转子,这是不能忽略的。如果转子上有缝隙,不错位且较小,指甲都不能够嵌入,动力性能至少打8折以上,此时极容易出现丢步的可能,建议更换;而伺服电机其致命弱点就是装卸时不能够敲打,很容易把里面的编码器振坏。伺服电机其动力线圈烧坏的几率相当低,编码器和接头损坏都是常见的,而伺服故障常见的也就是编码器故障。
6. 步进电机输出力矩
4a的步进电机最大扭矩有2.6牛米
42步进电机是指安装机座尺寸是42mm的步进电机,其最大输出力矩是0.5NM; 57步进电机是指安装机座尺寸是57mm的步进电机,其最大输出力矩是3.0NM。 42系列两相步进电机参数: 步距精度5% 温度80℃Max 环境温度-20℃—50℃ 绝缘电阻100MΩMin500VDC耐压500VAC1minute 径向跳动最大0.02mm(450g负载) 轴向跳动最大0.08mm(450g负载)
7. 步进电机的负载转矩计算公式
我们用型号为86的步进电机举例,这种尺寸的步进电机扭矩一般为3.0牛米,理想状态下,在电机转轴垂直方向距离一米的位置就是3.0牛,换算质量就是0.306公斤。如果这个电机安装了一个半径为1cm的的同步轮,那么在同步轮外缘可产生300牛的力,换算成质量就是30.6公斤。
8. 步进电机负载转矩大于启动转矩
首先,因为电机的结构,允许在低转速时、输出最大扭矩。并且,电机的转速普遍较高,甚至开关磁阻电机能达列每分钟7万转。在加装减速齿轮的情况下,可以大大提高扭矩,而大扭矩就可以提高加速性能。
而且,电机的高效区间明显比内燃机高,在加速时可以不换挡。少了换挡的时间,加速时间自然而然地就变短了。
9. 步进电机负载转矩计算
选择步进电机时,首先要保证步进电机的输出功率大于负载所需的功率。而在选用功率步进电机时,首先要计算机械系统的负载转矩,电机的矩频特性能满足机械负载并有一定的余量保证其运行可靠。在实际工作过程中,各种频率下的负载力矩必须在矩频特性曲线的范围内。一般地说最大静力矩Mjmax大的电机,负载力矩大。
选择步进电机时,应使步距角和机械系统匹配,这样可以得到机床所需的脉冲当量。在机械传动过程中为了使得有更小的脉冲当量,一是可以改变丝杆的导程,二是可以通过步进电机的细分驱动来完成。但细分只能改变其分辨率,不改变其精度。精度是由电机的固有特性所决定。
选择功率步进电机时,应当估算机械负载的负载惯量和机床要求的启动频率,使之与步进电机的惯性频率特性相匹配还有一定的余量,使之最高速连续工作频率能满足机床快速移动的需要。
选择步进电机需要进行以下计算:
(1)计算齿轮的减速比
根据所要求脉冲当量,齿轮减速比i计算如下:
i=(φ.S)/(360.Δ) (1-1) 式中φ ---步进电机的步距角(o/脉冲)
S ---丝杆螺距(mm)
Δ---(mm/脉冲)
(2)计算工作台,丝杆以及齿轮折算至电机轴上的惯量Jt。
Jt=J1+(1/i2)[(J2+Js)+W/g(S/2π)2] (1-2)
式中Jt ---折算至电机轴上的惯量(Kg.cm.s2)
J1、J2 ---齿轮惯量(Kg.cm.s2)
Js ----丝杆惯量(Kg.cm.s2) W---工作台重量(N)
S ---丝杆螺距(cm)
(3)计算电机输出的总力矩M
M=Ma+Mf+Mt (1-3)
Ma=(Jm+Jt).n/T×1.02×10ˉ2 (1-4)
式中Ma ---电机启动加速力矩(N.m)
Jm、Jt---电机自身惯量与负载惯量(Kg.cm.s2)
n---电机所需达到的转速(r/min)
T---电机升速时间(s)
Mf=(u.W.s)/(2πηi)×10ˉ2 (1-5)
Mf---导轨摩擦折算至电机的转矩(N.m)
u---摩擦系数
η---传递效率
Mt=(Pt.s)/(2πηi)×10ˉ2 (1-6)
Mt---切削力折算至电机力矩(N.m)
Pt---最大切削力(N)
(4)负载起动频率估算。数控系统控制电机的启动频率与负载转矩和惯量有很大关系,其估算公式为
fq=fq0[(1-(Mf+Mt))/Ml)÷(1+Jt/Jm)] 1/2 (1-7)
式中fq---带载起动频率(Hz)
fq0---空载起动频率
Ml---起动频率下由矩频特性决定的电机输出力矩(N.m)
若负载参数无法精确确定,则可按fq=1/2fq0进行估算。
(5)运行的最高频率与升速时间的计算。由于电机的输出力矩随着频率的升高而下降,因此在最高频率 时,由矩频特性的输出力矩应能驱动负载,并留有足够的余量。
(6)负载力矩和最大静力矩Mmax。负载力矩可按式(1-5)和式(1-6)计算,电机在最大进给速度时,由矩频特性决定的电机输出力矩要大于Mf与Mt之和,并留有余量。一般来说,Mf与Mt之和应小于(0.2 ~0.4)Mmax.


- 相关评论
- 我要评论
-