超声波电机应用(超声波电机应用前景)

101 2022-12-26 17:48

1. 超声波电机应用前景

1835年,制作世界上第一台能驱动小电车的应用马达为美国一位铁匠达文波(Thomas Davenport)。 

1870年代初期,世界上最早可商品化的马达由比利时电机工程师Zenobe Theophile Gamme所发明。

 1888年,美国著名发明家尼古拉·特斯拉应用法拉第的电磁感应原理,发明交流马达,即为感应马达。

1845年,英国物理学家惠斯顿(Wheatstone)申请线性马达的专利,但原理于1960年代才被重视,而设计了实用性的线性马达,已被广泛在工业上应用。 1

902年,瑞典工程师丹尼尔森利用特斯拉感应马达的旋转磁场观念,发明了同步马达。 

1923年,苏格兰人James Weir French 发明三相可变磁阻型(Variable reluctance)步进马达。

 1962年,藉霍尔元件之助,实用之DC无刷马达终于问世。

 1980年代,实用之超音波马达开始问世。

2. 行波型超声波电机

力学 能 力 功

碰撞 位移 能量 动能 质量 力矩 动量 位能 势能 功率 标量 速率 张力 矢量 向量 速度

重量

加速度 摩擦力

守恒定律 虎克定律 惯性定律 运动定律 抛物运动 万有引力

重力加速度

能量守恒定律 动量守恒定律 牛顿第一定律 牛顿第二定律 牛顿第三定律 法向反作用力

均加速度运动方程 作用与反作用力定律

波动

相 共 波

振幅 波腹 波峰 衍射 频率 光栅 强度 干涉 纵波 波节 周期 相位 共振

声波 驻波 横波 行波 波谷 波动 波速 波前 波长

电磁波 相位差 超声波

相长干涉 相消干涉 电磁波谱 叠加原理 光学 像

入射角 反射角 折射角 凹透镜 凸透镜 放大率 折射率

发散透镜 凹反射镜 会聚透镜 凸反射镜 反射定律 全内反射

焦距 焦点 光线 法线 主轴 实像 反射 折射 虚像

斯涅耳定律 热学 热

沸点 潜热 熔点 压力 压强 温度

热容量 比热容 比潜热 温度计

绝对零度 布朗运动 摄氏温标 查理定律 理想气体 开氏温标

波义耳定律 理想气体定律 电磁学 电荷 导体 电流 电场 磁场 磁极 磁化 马达 并联 电阻 串联 电压

交流电 安培计 导电体 二极管 直流电 涡电流 电磁铁 电动势 保险丝 发电机

绝缘体 电动机 电中性 电势差 电位...力学 能 力 功

碰撞 位移 能量 动能 质量 力矩 动量 位能 势能 功率 标量 速率 张力 矢量 向量 速度

重量

加速度 摩擦力

守恒定律 虎克定律 惯性定律 运动定律 抛物运动 万有引力

重力加速度

能量守恒定律 动量守恒定律 牛顿第一定律 牛顿第二定律 牛顿第三定律 法向反作用力

均加速度运动方程 作用与反作用力定律

波动

相 共 波

振幅 波腹 波峰 衍射 频率 光栅 强度 干涉 纵波 波节 周期 相位 共振

声波 驻波 横波 行波 波谷 波动 波速 波前 波长

电磁波 相位差 超声波

相长干涉 相消干涉 电磁波谱 叠加原理 光学 像

入射角 反射角 折射角 凹透镜 凸透镜 放大率 折射率

发散透镜 凹反射镜 会聚透镜 凸反射镜 反射定律 全内反射

焦距 焦点 光线 法线 主轴 实像 反射 折射 虚像

斯涅耳定律 热学 热

沸点 潜热 熔点 压力 压强 温度

热容量 比热容 比潜热 温度

3. 超声波电机应用前景如何

超声波马达是一款新型的电机,简称USM超声波马达,最早被应用于照相机上。传统的马达都是基于电磁原理工作的,将电磁能量变换成转动能量。而USM则是基于利用超声波振动能量变换成转动能量的全新原理来工作的。

那么究竟什么是超声波马达?其基本工作原理又如何?简单地说,人耳所能听到的声音频率范围大约在20赫兹~20千赫兹之间,而超过20千赫兹以上,人耳无法辨识的频率便称为超声波。超声波马达是利用压电材料输入电压会产生变形的特性,使其能产生超声波频率的机械振动,再透过摩擦驱动的机构设计,让超声波马达如同电磁马达一般,可做旋转运动或直线式移动。

通常电磁马达运转时我们会觉得有杂音,这是因为马达内部结构产生振动,而振动频率恰好在我们耳朵可以感受的频率范围内。而超声波马达和传统的马达有很大区别,不管传统的马达有多少种,其原理一般就是将电磁力转变为转动力,而超声波马达的转动力则是产生于超声波振动的能量。

4. 谐波电机前景

以前由于接入供电系统的非线性设备较小,帮在系统中引起的谐波电流也很小,所以对电力质量的影响不大。随着电子技术的发展,使用大功率半导体开关器件以及各类开关电源的产品,如电视机、空调器、节能灯、调光器、洗衣机、微波炉,信息技术设备等迅速涌入居民家庭,虽然每台设备向电网注入的谐波电流不大,但这些设备数量大、分布广。有些家用电器如电视机、空调器等在使用时具有集中的特点,在某些时段会使注入到电网的谐波电流对公用电网造成的谐波问题特别突出,这不但使接入该电网的设备无法正常工作,甚至造成故障,而且还会使供电系统中性线承受的电流超载,影响供电系统的电力输送。因此谐波问题得到各有关方面的高度重视。   供电系统中的谐波危害主要表现在以下几个方面。   1.增加了发、输、供和用电设备的附加损耗,使设备过热,降低设备的效率和利用率。   由于谐波电流的频率为基波频率的整数倍,高频电流流过导体时,因集肤效应的作用,使导体对谐波电流的有效电阻增加,从而增加了设备的功率损耗、电能损耗,使导体的发热严重。   (1)对旋转电机的影响   谐波对旋转电机的危害主要是产生附加的损耗和转矩。由于集肤效应、磁滞、涡流等随着频率的增高而使在旋转电机的铁心和绕组中产生的附加损耗增加。在供电系统中,用户的电动机负荷约占整个负荷的85%左右。因此,谐波使电力用户电动机总的附加损耗增加的影响最为显著。由于电动机的出力一般不能按发热情况进行调整,由谐波引起电动机的发热效应是按它能承受的谐波电压折算成等值的基波负序电压来考虑的。试验表明,在额定出力下持续承受为3%额定电压的负序电压时,电动机的绝缘寿命要减少一半。因此,国际上一般建议在持续工作的条件下,电动机承受的负序电压不宜超过额定电压的2%。   谐波电流产生的谐波转矩对电动机的平均转矩的影响不大,但谐波会产生显著的脉冲转矩,可能出现电机转轴扭曲振动的问题。这种振荡力矩使汽轮发电机的转子元件发生扭振,并使汽轮机叶片产生疲劳循环。   (2)对变压器的影响   谐波电流使变压器的铜耗增加,特别是3次及其倍数次谐波对三角形连接的变压器,会在其绕组中形成环流,使绕组过热;对全星形连接的变压器,当绕组中性点按地,而该侧电网中分布电容较大或者装有中性点接地的并联电容器时,可能形成3次谐波谐振,使变压器附加损耗增加。   (3)对输电线路的影响   由于输电线路阻抗的频率特性,线路电阻随着频率的升高而增加。在集肤效应的作用下,谐波电流使输电线路的附加损耗增加。在供应电网的损耗中,变压器和输电线路的损耗占了大部分,所以谐波使电网网损增大。谐波还使三相供电系统中的中性线的电流增大,导致中性线过载。输电线路存在着分布的线路电感和对地电容,它们与产生谐波的设备组成串联回路或并联回路时,在一定的参数配合条件下,会发生串联谐振或并联谐振。一般情况下,并联谐波谐振所产生的谐波过电压和过电流对相关设备的危害性较大。当注入电网的谐波的频率位于在网络谐振点附近的谐振区内时,会激励电感、电容产生部分谐振,形成谐波放大。在这种情况下,谐波电压升高、谐波电流增大将会引起继电保护装置出现误动,以至损坏设备,与此同时还可产生相当大的谐波网损。对于电力电缆线路,由于电缆的对地电容比架空线路约大10-20倍,而感抗约为架空线路的1/2-1/3,因此更容易激励出较大的谐波谐振和谐波放大,造成绝缘击穿的事故。   (4)对电力电容器的影响   随着谐波电压的增高,会加速电容器的老化,使电容器的损耗系数增大、附加损耗增加,从而容易发生故障和缩短电容器的寿命。另一方面,电容器的电容与电网的感抗组成的谐振回路的谐振频率等于或接近于某次谐波分量的频率时,就会产生谐波电流放大,使得电容器因过热、过电压等而不能正常运行。   2.影响继电保护和自动装置的工作和可靠性   谐波对电力系统中以负序(基波)量为基础的继电保护和自动装置的影响十分严重,这是由于这些按负序(基波)量整定的保护装置,整定值小、灵敏度高。如果在负序基础上再叠加上谐波的干扰(如电气化铁道、电弧炉等谐波源还是负序源)则会引起发电机负序电流保护误动(若误动引起跳闸,则后果严重)、变电站主变的复合电压启动过电流保护装置负序电压元件误动,母线差动保护的负序电压闭锁元件误动以及线路各种型号的距离保护、高频保护、故障录波器、自动准同期装置等发生误动,严重威胁电力系统的安全运行。

5. 超声电机的应用

液位计的继电器输出连接中间继电器,用中间继电器来控制电机。

当然也可以用4~20mA电流来控制变频器,用变频器来控制电机。

6. 超声波电机应用前景分析

是步进电机。步进电机在超声波清洗机上面的应用,相信很多人对于超声波清洗机都的不陌生的把,下面还是给大家说说。

在一段时间里面小型的步进电机发展的还是比较快的,其中转子是小型电机里面非常重要的零件之一,包括上面的油污以及粉尘,在有就是碳粉等等都会直接的去影响到小型的电机其实使用的寿命的,所以对于转子上的这些污垢我们可以去直接用超声波清洗。

7. 超声电机技术

想马上在工作的时候也可以产生一定的超声波

8. 超声波电机应用前景怎么样

功率一般单个不会有那么大的,我们波达做超声波震板最大也就是200W如果你想在功率大一点那你最好加多几个振子就行了。

没必要要那么大的,发热也历害。

9. 超声电机技术与应用

应该是超声波电机吧,超声波电动机具有独特的优点及良好的性能,随着我国对超声波电机不断的研究深入,使得国产超声波电机得到了快速的发展,应用领域也日渐增多。超声波电机的应用领域有哪些呢?

1、微型智能机器人:用超声电动机作为机器人的关节驱动器,超声波电动机具有低速、大转矩和非连续工作中具有比电磁电机更为优越的性能,可将关节的固定部分和运动部分分别与超声马达的定、转子作为一体,使整个机构非常紧凑。

2、医疗器械:由于传统电磁式电机自身会产生磁场,从而对实时成像产生不良影响,并且传统电磁式电机在强磁场的环境中无法正常工作。超声波电动机具有自身不产生磁场,也不受磁场干扰的特性,非常适合用于核磁共振。

3、航空航天:航空航天器往往处在高真空、极端温度、强辐射、无法有效润滑等恶劣条件中,且对系统重量要求严苛,超声马达是其中驱动器的最佳选择。

4、精密仪器仪表:电磁马达用齿轮箱减速来增大力矩,由于存在齿轮间隙和回程误差,难以达到很高定位精度,而超声马达可直接实现驱动,且响应快、控制特性好,可用于精密仪器仪表。

5、汽车阀门控制:由于超声波电动机具有自锁特性和响应快等特性,并且可以避免火花的产生,对于自动调节油门控制超声波电动机具有它独特的优点。

相比与电磁式电机,超声波电动机具有其独特的应用优势,由于超声波电动机还不是很普及,只是被一些有实力的高端企业应用。目前超声波电动机更多应用在高端,精密的产品等领域,在日常生活上使用的还是比较少,但是随着超声波电动机进一步研究和探索,超声波电动机的应用领域会进一步扩大。

10. 超声电机的发展现状

1.两者原理不同:电动牙刷是用高速马达使得刷头旋转及震动以达到洁牙的效果,而超声波牙刷是利用超声波能量在牙周的空化效应达到清除牙周的病菌和不洁物的,

2.两者清洁范围不同。超声波牙刷其清洁范围能覆盖牙周各个部位,但是电动牙刷的范围要小

3.两者的作用效果不同,超声波的效果要好于电动牙刷。超声波能量通过刷头的刷毛传递到牙齿和牙龈表面,一方面松动菌斑、牙垢和细小的牙石和牙齿的粘合,破坏细菌在龈袋及牙面各隐藏处里的寄生繁殖

11. 什么是超声波电机

频率高于人的听觉上限(约为20000赫)的声波,称为超声波,或称为超声。

超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律并没有本质上的区别。但是超声波的波长很短,只有几厘米,甚至千分之几毫米。与可听声波比较,超声波具有许多奇异特性:传播特性——超声波的波长很短,通常的障碍物的尺寸要比超声波的波长大好多倍,因此超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,这一特性就越显著。功率特性——当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。声波功率就是表示声波做功快慢的物理量。在相同强度下,声波的频率越高,它所具有的功率就越大。由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。空化作用——当超声波在液体中传播时,由于液体微粒的剧烈振动,会在液体内部产生小空洞。这些小空洞迅速胀大和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上万个大气压的压强。微粒间这种剧烈的相互作用,会使液体的温度骤然升高,起到了很好的搅拌作用,从而使两种不相溶的液体(如水和油)发生乳化,并且加速溶质的溶解,加速化学反应。这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。

我们知道正确的波的物理定义是:振动在物体中的传递形成波。这样波的形成必须有两个条件:一是振动源,二是传播介质。波的分类一般有如下几种:一是根据振动方向和传播方向来分类。当振动方向与传播方向垂直时,称为横波。当振动方向与传播方向一致时,称为纵波。二是根据频率分类,我们知道人耳敏感的听觉范围是20HZ-20000HZ,所以在这个范围之内的波叫做声波。低于这个范围的波叫做次声波,超过这个范围的波叫超声波。

波在物体里传播,主要有以下的参数:一是速度V,二是频率F,三是波长λ。三者之间的关系如下:V=F.λ。波在同一种物质中传播的速度是一定的,所以频率不同,波长也就不同。另外,还需要考虑的一点就是波在物体里传播始终都存在着衰减,传播的距离越远,能量衰减也就越厉害,这在超声波加工中也属于考虑范围。

超声波在塑料加工中的应用原理:

塑料加工中所用的超声波,现有的几种工作频率有15KHZ,18KHZ,20KHZ,40KHZ。其原理是利用纵波的波峰位传递振幅到塑料件的缝隙,在加压的情况下,使两个塑料件或其它件与塑料件接触部位的分子相互撞击产生融化,使接触位塑料熔合,达到加工目的。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
点击我更换图片