1. 行波超声波电机的工作原理是什么
力学 能 力 功
碰撞 位移 能量 动能 质量 力矩 动量 位能 势能 功率 标量 速率 张力 矢量 向量 速度
重量
加速度 摩擦力
守恒定律 虎克定律 惯性定律 运动定律 抛物运动 万有引力
重力加速度
能量守恒定律 动量守恒定律 牛顿第一定律 牛顿第二定律 牛顿第三定律 法向反作用力
均加速度运动方程 作用与反作用力定律
波动
相 共 波
振幅 波腹 波峰 衍射 频率 光栅 强度 干涉 纵波 波节 周期 相位 共振
声波 驻波 横波 行波 波谷 波动 波速 波前 波长
电磁波 相位差 超声波
相长干涉 相消干涉 电磁波谱 叠加原理 光学 像
入射角 反射角 折射角 凹透镜 凸透镜 放大率 折射率
发散透镜 凹反射镜 会聚透镜 凸反射镜 反射定律 全内反射
焦距 焦点 光线 法线 主轴 实像 反射 折射 虚像
斯涅耳定律 热学 热
沸点 潜热 熔点 压力 压强 温度
热容量 比热容 比潜热 温度计
绝对零度 布朗运动 摄氏温标 查理定律 理想气体 开氏温标
波义耳定律 理想气体定律 电磁学 电荷 导体 电流 电场 磁场 磁极 磁化 马达 并联 电阻 串联 电压
交流电 安培计 导电体 二极管 直流电 涡电流 电磁铁 电动势 保险丝 发电机
绝缘体 电动机 电中性 电势差 电位...力学 能 力 功
碰撞 位移 能量 动能 质量 力矩 动量 位能 势能 功率 标量 速率 张力 矢量 向量 速度
重量
加速度 摩擦力
守恒定律 虎克定律 惯性定律 运动定律 抛物运动 万有引力
重力加速度
能量守恒定律 动量守恒定律 牛顿第一定律 牛顿第二定律 牛顿第三定律 法向反作用力
均加速度运动方程 作用与反作用力定律
波动
相 共 波
振幅 波腹 波峰 衍射 频率 光栅 强度 干涉 纵波 波节 周期 相位 共振
声波 驻波 横波 行波 波谷 波动 波速 波前 波长
电磁波 相位差 超声波
相长干涉 相消干涉 电磁波谱 叠加原理 光学 像
入射角 反射角 折射角 凹透镜 凸透镜 放大率 折射率
发散透镜 凹反射镜 会聚透镜 凸反射镜 反射定律 全内反射
焦距 焦点 光线 法线 主轴 实像 反射 折射 虚像
斯涅耳定律 热学 热
沸点 潜热 熔点 压力 压强 温度
热容量 比热容 比潜热 温度
2. 行波型超声波电机的机理
频率高于人的听觉上限(约为20000赫)的声波,称为超声波,或称为超声。
超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律并没有本质上的区别。但是超声波的波长很短,只有几厘米,甚至千分之几毫米。与可听声波比较,超声波具有许多奇异特性:传播特性——超声波的波长很短,通常的障碍物的尺寸要比超声波的波长大好多倍,因此超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,这一特性就越显著。功率特性——当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。声波功率就是表示声波做功快慢的物理量。在相同强度下,声波的频率越高,它所具有的功率就越大。由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。空化作用——当超声波在液体中传播时,由于液体微粒的剧烈振动,会在液体内部产生小空洞。这些小空洞迅速胀大和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上万个大气压的压强。微粒间这种剧烈的相互作用,会使液体的温度骤然升高,起到了很好的搅拌作用,从而使两种不相溶的液体(如水和油)发生乳化,并且加速溶质的溶解,加速化学反应。这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。
我们知道正确的波的物理定义是:振动在物体中的传递形成波。这样波的形成必须有两个条件:一是振动源,二是传播介质。波的分类一般有如下几种:一是根据振动方向和传播方向来分类。当振动方向与传播方向垂直时,称为横波。当振动方向与传播方向一致时,称为纵波。二是根据频率分类,我们知道人耳敏感的听觉范围是20HZ-20000HZ,所以在这个范围之内的波叫做声波。低于这个范围的波叫做次声波,超过这个范围的波叫超声波。
波在物体里传播,主要有以下的参数:一是速度V,二是频率F,三是波长λ。三者之间的关系如下:V=F.λ。波在同一种物质中传播的速度是一定的,所以频率不同,波长也就不同。另外,还需要考虑的一点就是波在物体里传播始终都存在着衰减,传播的距离越远,能量衰减也就越厉害,这在超声波加工中也属于考虑范围。
超声波在塑料加工中的应用原理:
塑料加工中所用的超声波,现有的几种工作频率有15KHZ,18KHZ,20KHZ,40KHZ。其原理是利用纵波的波峰位传递振幅到塑料件的缝隙,在加压的情况下,使两个塑料件或其它件与塑料件接触部位的分子相互撞击产生融化,使接触位塑料熔合,达到加工目的。
3. 压电式超声波发生器的工作原理
超声波定位系统是利用超声波的空间传播特性,来确定目标的具体位置。将超声波发生器置于被定位的目标上面,向周围按照一定的时间间隔发送超声波脉冲,在周围3个固定位置上分别接收超声波发射装置发出来的脉冲信号,由于超声波在空间传送速度比较慢,所以通过比较三个接收装置收到信号的时间先后,可以反演出超声波发生器的具体位置,也就是被定位目标的位置,当目标移动时候,可以通过不间断测量,描出目标的运动轨迹。
4. 纹波电机原理
电机因为都采用齿槽结构,齿用来引导磁力线,降低磁阻,槽用来镶嵌绕组并与齿中的磁力线交链,齿与槽的不同导磁性使转子在不同位置有着数量不等的磁力线,在磁极对准定子齿的位置,铁磁相吸以至阻碍了电机转子的转动,这就称为电机的齿槽效应和齿槽阻力矩。
虽然在现有电机设计制造中可以采取适当措施减小齿槽效应,但要完全消除齿槽阻力矩,在现有电机结构中是完全不可能的。齿槽效应增加了电机的起动阻力,还使得电机运行不稳定,会降低电机的效率。
齿槽转矩是由转子的永磁体磁场同定子铁心的齿槽相互作用,在圆周方向产生的转矩。此转矩与定子的电流无关,它总是试图将转子定位在某些位置。在变速驱动中,当转矩频率与定子或转子的机械共振频率一致时,齿槽转矩产生的振动和噪声将被放大。齿槽转矩的存在同样影响了电机在速度控制系统中的低速性能和位置控制系统中的高精度定位。解决齿槽转矩脉动问题的方法主要集中在电机本体的优化设计上。
减小齿槽效应的方法有两种,一是磁极相对主轴有一定的倾斜,二是采用分数槽设计结构。
斜槽法:定子斜槽或转子斜极是抑制齿槽转矩脉动最有效且应用广泛的方法之一,该方法主要用于定子槽数较多且轴向较长的电机。为产生恒定的电磁转矩,反电动势波形必须是平顶宽度大于120°的理想梯形波,而斜槽或斜极引起的绕组反电动势的正弦化将会增大电磁转矩纹波。因此,选择合适的斜槽角度是有效抑制齿槽转矩脉动的关键。
分数槽法:该方法可以提高齿槽转矩基波的频率,使齿槽转矩脉动量明显减少。但是采用了分数槽后,各极下绕组分布不对称,从而使电机的有效转矩分量部分被抵消,电机的平均转矩也会因此而相应减小。
5. 超声波 原理
超声波是指频率为20千赫~50兆赫左右的电磁波,它是一种机械波,需要能量载体—介质—来进行传播。超声波在传递过程中存在着的正负压强交变周期,在正相位时,对介质分子产生挤压,增加介质原来的密度;负相位时,介质分子稀疏、离散,介质密度减小。也就是说,超声波并不能使样品内的分子产生极化,而是在溶剂和样品之间产生声波空化作用,导致溶液内气泡的形成、增长和爆破压缩,从而使固体样品分散,增大样品与萃取溶剂之间的接触面积,提高目标物从固相转移到液相的传质速率。
超声波是声波大家族中的一员。
声波是物体机械振动状态(或能量)的传播形式。所谓振动是指物质的质点在其平衡位置附近进行的往返运动。譬如,鼓面经敲击后,它就上下振动,这种振动状态通过空气媒质向四面八方传播,这便是声波。
超声波是指振动频率大于20KHz以上的,其每秒的振动次数(频率)甚高,超出了人耳听觉的上限(20000Hz),人们将这种听不见的声波叫做超声波。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性,目前腹部超声成象所用的频率范围在 2∽5MHz之间,常用为3∽3.5MHz(每秒振动1次为1Hz,1MHz=106Hz,即每秒振动100万次,可闻波的频率在16-20,000HZ 之间)
6. 什么叫做机械波
机械振动在介质中的传播称为机械波(mechanical wave)。
波的干涉,物理学现象。频率相同的两列波叠加,使某些区域的振动加强,某些区域的振动减弱,而且振动加强的区域和振动减弱的区域相互隔开。
这种现象叫做波的干涉。
由于机械波振动引起的干涉叫机械波的干涉。
- 相关评论
- 我要评论
-