直接转矩控制具体是什么?

298 2023-11-24 03:19

一、直接转矩控制具体是什么?

1、矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,对电动机在励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。

基于转差频率的矢量控制方式属于闭环控制方式,需要在电动机上安装速度传感器,因此,应用范围受到限制。

无速度传感器矢量控制是通过坐标变换处理分别对励磁电流和转矩电流进行控制,然后通过控制电动机定子绕组上的电压、电流辨识转速以达到控制励磁电流和转矩电流的目的。这种控制方式调速范围宽,启动转矩大,工作可靠,操作方便,但计算比较复杂。

2、直接转矩控制是利用空间矢量坐标的概念,在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩,通过检测定子电阻来达到观测定子磁链的目的,因此省去了矢量控制等复杂的变换计算,系统直观、简洁,计算速度和精度都比矢量控制方式有所提高。即使在开环的状态下,也能输出100%的额定转矩,对于多拖动具有负荷平衡功能。

二、直接转矩控制与矢量控制区别?

直接转矩控制与矢量控制的主要区别如下:(1)控制特别。矢量控制以转子磁通的空间矢量为基准,在控制过程中,需要电动机的参数多,定向准确度受参数变化的影响较大;要进行复杂的等效变换,调节过程需要若干个开关周期才能完成,故响应时间较长(一般大于100ms)。

而直接转矩控制是以定子电压的空间矢量为基准,在控制过程中,只需要电动机的定子电阻一个参数,既易于测量,定向准确度也高;不必进行等效变换,故动态响应快,只需1- 5ms;容易实速度传感器控制。 (2)脉宽调制。

矢量控制采用正弦脉宽调制( SPWM)方式,故必须有SPWM发生器,结构复杂;输出电流的谐波分量较小,冲击电流小;载波频率固定,电磁噪声小。直接转矩控制又称DTC控制方式,逆变电路的开关状态(是否有电压输出)取决于实测转矩信号与给定转矩信号大小比较。

它不需要SPWM发生器,故结构简单,且转矩响应快;输出电流的谐波分量较大,冲击电流也较大,逆变器输出端常常需要接人输出滤波器或输出电抗器;逆变器的开关频率不固定,电动机的电磁噪声较大。

可见,直接转矩控制和矢量控制各有优缺点。直接转矩控制在高频运行和低频运行时的实际性能都不如矢量控制。 目前,两种控制方式在互相渗透。如有的变频器在矢量控制方式中加入转矩控制功能;而采用直接转矩控制方式的变频器在低频段则借助矢量控制的方法来改善其低频运行特性。

三、直接转矩控制技术概述是什么?

直接转矩控制系统与矢量控制系统都采用转矩和磁链分别控制。矢量控制系统强调转矩 与转子磁链的解耦,有利于分别设计转速与磁链调节器;实行连续控制,调速范围宽,可达1:100; 按定向时受电机转子参数影响,降低了适应性。 直接转矩控制系统则直接进行转矩砰-砰控制,避开了旋转坐标变换;控制定子磁链,而不是转子磁链,不受转子参数的影响;不可避免地产生转矩脉动,降低了调速性能,因此只适用于风机、水泵以及牵引传动等对调速范围要求不高的场合。矢量控制是通过矢量坐标变换将异步电动机的转矩控制与直流电动机的转矩控制统一起来的,可见,矢量坐标系是实现矢量控制的关键 特点与性能 直接转矩控制系统 矢量控制系统 磁链控制 定子磁链 转子磁链 转矩控制 砰-砰控制,脉动 连续控制,平滑 旋转坐标变换 不需要 需要 转子参数变化影响 无 有 调速范围 不够宽 较宽

四、简单说明直接转矩控制的优点?

直接转矩控制(Direct Torque Control——DTC),国外的原文有的也称为Direct self-control——DSC,直译为直接自控制,这种“直接自控制”的思想以转矩为中心来进行综合控制,不仅控制转矩,也用于磁链量的控制和磁链自控制。

五、abbacs800变频器直接转矩控制?

ABB变频器ACS800系列变频器主从控制采用直接转矩(dtc)作为其核心控制原理。而直接转矩控制技术是在变频器内部建立了一个交流异步电动机的软件数学模型,根据实测的直流母线电压、开关状态和电流计算出一组精确的电机转矩和定子磁通实际值,并将这些参数值直接应用于控制输出单元的开关状态,变频器的每一次开关状态都是单独确定的,这意味着可以产生实现最佳的开关组合并对负载变化作出快速地转矩响应,并将转矩相应限制在一拍以内,且无超调,真正实现了对电动机转矩和转速的实时控制。

六、永磁交流同步电机直接转矩控制仿真?

其实仿真使用很简单,关键是在你要仿真内容的设计。

1.点击快捷按钮,即可弹出SIMULINK窗口;

2.在MATLAB命令行中输入SIMULINK,即可弹出SIMULINK窗口;

3.在菜单栏中也可以找到SIMULINK窗口;

七、三相异步电动机直接转矩很大?

1、启动转矩,电机启动瞬间的电磁转矩,它的大小等于电机负载的静摩擦力矩,也是电机启动电流最大的时刻

2、最大转矩,是电机的最大转矩,异步电机在临界转差时达到最大转矩,此时异步电机的感抗与阻抗相等,功率因数角只有45度;

3、堵转转矩,堵转是异步电机运期间,由于负载力矩增大到大于电机最大转矩,电机由稳定区进入非稳定区,转速下降,转矩下降,直到停止。把电机运行期间发生堵转时的转矩叫堵转转矩,堵转转矩大于最大转矩;

八、什么是转矩控制?

一般我们在使用变频器时,都是关心电机的转速,所以给变频器的给定值都是对应的转速,比如RPM或者HZ。

但在有些场合我们对电机的要求不是转速而是转矩,我们要求电机必须输出稳定的转矩,一般以电机额定转矩的百分比表示。

在这种情况下就需要变频器接收的是转矩给定,此时变频器的给定不再是速度。比如给定50%,这就表示电机只输出额定转矩50%的转矩。比如在船舶或测试台上经常会用到。 另外,不要和直接转矩控制DTC算法混淆,DTC是一种控制算法,转矩控制是一种控制方式。

九、转矩控制的原理?

转矩控制是一种常用的控制方法,用于控制旋转系统(如电机或机器人臂)的力矩或扭矩。其原理是通过测量旋转系统的状态(如位置、速度和加速度),并计算所需的力矩,然后将该力矩应用于系统上以实现所需的控制效果。

转矩控制主要包括以下几个步骤:

1. 状态测量:通过传感器(如编码器或陀螺仪)测量旋转系统的状态,包括位置、速度和加速度等。这些测量值可用于计算所需的力矩。

2. 控制算法:根据系统的需要,设计相应的控制算法。常见的控制算法有比例-积分-微分(PID)控制算法和模型预测控制(MPC)算法等。这些算法根据系统状态误差和变化率来计算所需的力矩指令。

3. 动力学模型:根据系统的特性建立动力学模型,描述转矩对于系统状态的影响。这可以是物理方程、传递函数或神经网络等形式。

4. 力矩控制计算:根据系统的动力学模型和控制算法,计算所需的力矩指令。这些指令可以是力矩值或控制信号,如电流或电压。

5. 执行力矩控制:将计算得到的力矩指令应用于旋转系统上。这可以通过直接控制驱动系统的电流或电压来实现,也可以通过其他机械或电子装置来实现。

通过不断测量和调整力矩指令,转矩控制可以使旋转系统在所需的状态下稳定运行,并实现精确的控制效果。它在工业自动化、机器人控制、运动控制等领域广泛应用。

十、变频器直接转矩控制与矢量控制有何不同?

1、矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,对电动机在励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。

基于转差频率的矢量控制方式属于闭环控制方式,需要在电动机上安装速度传感器,因此,应用范围受到限制。

无速度传感器矢量控制是通过坐标变换处理分别对励磁电流和转矩电流进行控制,然后通过控制电动机定子绕组上的电压、电流辨识转速以达到控制励磁电流和转矩电流的目的。这种控制方式调速范围宽,启动转矩大,工作可靠,操作方便,但计算比较复杂。

2、直接转矩控制是利用空间矢量坐标的概念,在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩,通过检测定子电阻来达到观测定子磁链的目的,因此省去了矢量控制等复杂的变换计算,系统直观、简洁,计算速度和精度都比矢量控制方式有所提高。即使在开环的状态下,也能输出100%的额定转矩,对于多拖动具有负荷平衡功能。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
点击我更换图片