同步电动机摇摆方程(同步发电机运动方程)

267 2023-01-01 12:22

1. 同步发电机运动方程

转子运动方程又称摇摆方程描述发电机转子的运动,并将惯性转矩与转子上的机械转矩和电气转矩的合成量相关联,即Jd^2θ/dt^2=Ta (N*m)。式中J是附加在转子轴上的所有转动质量的转动惯量,单位是Kg*m^2;θ是转子轴关于一个固定参考轴的机械角,单位是rad;Ta是作用于转子轴上的加速转矩,单位是N*m。假设一台电机是同步发电机,所以驱动转矩Tm是机械转矩,制动或负荷转矩是电气转矩。那么加速转矩Ta=Tm-Te。

2. 同步发电机电机方程

表贴式永磁同步电机的设计方法,包括以下设计步骤:

步骤1,确定表贴式永磁同步电机的基本结构参数,包括电机尺寸,极槽配合,结构材料,并优化定子槽口Bs0、槽宽Bs1和槽深Hs2的大小,使用有限元计算的方法使电机满足较好的电磁与机械性能;

步骤2,确定电机转子永磁体的极弧系数和削角角度α,以此来控制永磁体的形状,得出永磁体最佳的极弧系数和削角角度α的组合,具体的优化策略为使电机的削角角度α从0°开始每隔1°递增,削角角度α逐渐增大的同时,t1、t2的数值随之分别呈现出递增和递减的结果,t1、t2分别为合金护套导条外表面切向宽度和永磁体外表面切向宽度;

步骤3,根据永磁体优化后得出的极弧系数和削角角度α的形状,将每两块相邻永磁体之间的空隙使用金属导条填满,并将所有导条两端端部使用圆环将其连接为一个整体;要求永磁体和合金护套紧密贴合,在电机在一定转速运行时,合金护套为永磁体提供足够的支撑力,避免永磁体受离心力的作用而损坏;

步骤4,电机转子合金护套与永磁体紧密配合并安装于转轴上,所设计合金护套为内嵌式,而电机的气隙磁密与气隙长度成反比,较大的气隙长度不利于电机磁密的提升,电机磁密可以表示为下式:

式中,Fδ为气隙磁动势,Λ为气隙磁导,Kδ为气隙系数,μ0为气隙磁导率;

步骤5,表贴式永磁电机强度分析可使用材料力学中旋转圆盘和厚壁圆筒理论建立机械稳定方程,为保证护套和永磁体的安全可靠,护套和永磁体所受的最大拉力要小于材料的许用应力,护套和永磁体σSleeve所受拉力σPM、σSleeve表示为:

σPM=σp+σt1-σc1<[σ1]

σSleeve=σp+σc2<[σ2]

式中,σp为永磁体和护套之前的装配应力,由护套过盈装配所致;σt1为永磁体与转子铁芯的拉力,由二者之间的粘合剂所产生;σc1、σc2分别为永磁体和护套受到的离心拉力,由转子转动所致;[σi]为材料的许用应力,σsi为材料的抗拉强度,n为材料安全系数;新型内嵌式合金护套需要使用有限元计算的方法来对护套强度进行分析校验;

步骤6,永磁体在高温作用下会产生不可逆退磁,为避免永磁体在运行状态下失磁,需要对转子永磁体的涡流损耗进行控制;

步骤7,电机的定转子设计完成后,需要对电机的各方面性能进行进一步校验,验证电机是否满足设计要求,如果不满足,需要检查电机参数并返回到步骤2、3、4、5、6重新进行设计。

进一步,所述步骤2中,经过对永磁体切削角度的优化,当α为12.5度时,空载气隙磁密中的30次谐波和反电势中的3次谐波基本被消除,波形也更接近正弦曲线。

进一步,所述步骤2中还包括,永磁体和合金护套的宽度可以通过控制t1和t2的来调节,具体的调节方式为:当增加t1的值时,由于t1与t2的和为一个常数,t2得值随之减小,由此永磁体和护套导条的宽度比例随之发生改变,永磁体和合金护套不同的宽度配合具有不同的电磁和机械性能;同时永磁体的极弧系数可以通过控制t1来调节,不同的极弧系数也可以表现出不同的电机性能。

3. 同步发电机的转子运动方程

电机负载转矩的计算公式如下:

SR2,M=CU12 公式,R22+(S X20)2,其中C为常数同电机本身的特性有关;U1输入电压;R2为转子电阻;X20为转子漏感抗;S为转差率。

可以知道M∝U12 转矩与电源电压的平方成正比,设正常输入电压时负载转矩为M2 ,电压下降使电磁转矩M下降很多;由于M2不变,所以M小于M2平衡关系受到破坏,导致电动机转速的下降,转差率S上升;

又引起转子电压平衡方程式的变化,使转子电流I2上升。也就是定子电流I1随之增加(由变压器关系可以知道);同时I2增加也是电动机轴上送出的转矩M又回升,直到与M2相等为止。这时电动机转速又趋于新的稳定值。

注:负载转矩是用途的名称负载转矩占全负载驱动转矩的百分数起步加速峰值运转。

4. 同步发电机稳态运行方程

电容C1与电源直接连接,马上进入稳态,因此列微分方程时只考虑C2。

5. 异步电机运动方程

常见触发器的特征方程:

(1)JK 触发器的布尔方程:

JKT : = J * /JKT + /K * JKT

JKC : = /J * /JKC + K * JKC

(2)T触发器的布尔方程:

TT:= T * /TT + /T * TT

TC:= T * /TC +/T * TC

(3)RS触发器的布尔方程:

SRT:= S + /R * SRT

SRC:= R + /S * SRC

(4)D 触发器的布尔方程:

DT : = D * /CLR + PR

DC : = /D * /PR + CLR

触发器有如下作用:

可在写入数据表前,强制检验或转换数据。

触发器发生错误时,异动的结果会被撤销。

部分数据库管理系统可以针对数据定义语言(DDL)使用触发器,称为DDL触发器。

可依照特定的情况,替换异动的指令 (INSTEAD OF)。

6. 同步发电机组的转子运动方程

根据同步电机工作原理可知,同步电机电流不稳定主要原因有以下几个方面:

一是同步电机的电源电压不稳定导致电机电流不稳定。

当电机的电源电压不稳定时,根据同步电机电压平衡方程式很容易计算出来电机的电流一定会不稳定。

二是同步电机负载不稳定导致电机电流不稳定。当电机负载不稳定时,同步电机电磁转矩就会不稳定,由此一定引起电流不稳定。

三是同步电机本身问题是导致电机电流不稳定最主要原因。例如,同步电机内部磁场不稳定或定子和转子之间磁路不对称等都会导致电机电流不稳定。

7. 同步发电机运动方程怎么求

异步电动机电势平衡方程式

1、定子绕组电势平衡方程式

定子绕组接到交流电源上,与电源电压相平衡的电势(压降)包括:

主电势(感应电势):

定子绕组通入三相对称交流电流时,将会产生旋转的主磁通,同时被定子绕组和转子绕组切割,并在其中产生感应电势。

定子绕组感应电势的有效值:E1=4.44f1*N1*Φ1*Kw1

漏磁电势(漏抗压降)

定子漏磁通:仅与定子绕组相匝链。

漏抗压降: E1σ=-jI1*X1σ

电阻压降: R1I1

定子电势平衡方程式:U1=-E1+(R1+jX1σ)I1=-E1+Z1σI1

2、转子绕组的电势及电流

转子绕组的感应电势

转子绕组切割主磁通的转速

主磁通以同步速度旋转

转子以转速n旋转

转子绕组导体切割主磁通的相对转速为(n1-n)=sn1

转子绕组中感应电势的频率:

公式: f2=sf1

结论:由于s很小,转子感应电势频率很低。0.5-3Hz

转子感应电势的有效值

公式:E2S=SE2

感应电势与转差率正比。

对绕线式异步电机,转子绕组每相串联匝数,相数计算方法同定子绕组的计算。

对笼型转子来说,由于每个导条中电流相位均不一样,所以,每个导条即为一相,可见相数等于导条数即转子槽数;每相串联匝数为半匝即1/2。

注意转子不动时(s=1)时的感应电势与转子旋转是感应电势的关系。

转子绕组的阻抗

由于转子绕组是闭合的,所以有转子电流流过。同样会产生漏磁电抗压降。

漏抗公式:X2σs=S*X2σ。漏抗也与转差率正比。转速越高,漏抗越小。

考虑到转子绕组的相电阻后:Z2σs=R2+jSX2σ。

转子绕组中的电流

转子绕组短路,转子电压为0,感应电势全部加在转子阻抗上

转子回路方程: E2S=jI2*Z2σs

8. 同步发电机转子运动方程

使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩。转矩是各种工作机械传动轴的基本载荷形式,与动力机械的工作能力、能源消耗、效率、运转寿命及安全性能等因素紧密联系,转矩的测量对传动轴载荷的确定与控制、传动系统工作零件的强度设计以及原动机容量的选择等都具有重要的意义。此外,转矩与功率的关系T=9549P/n

电机的额定转矩表示额定条件下电机轴端输出转矩。转矩等于力与力臂或力偶臂的乘积,在国际单位制(SI)中,转矩的计量单位为牛顿・米(N・m),工程技术中也曾用过公斤力・米等作为转矩的计量单位。电机轴端输出转矩等于转子输出的机械功率除以转子的机械角速度。直流电动机堵转转矩计算公式TK=9.55KeIK 。

三相异步电动机的转矩公式为:

S R2

M=C U12 公式 [2 ]

R22+(S X20)2

C:为常数同电机本身的特性有关; U1 :输入电压 ;

R2 :转子电阻; X20 :转子漏感抗; S:转差率

可以知道M∝U12 转矩与电源电压的平方成正比,设正常输入电压时负载转矩为M2 ,电压下降使电磁转矩M下降很多;由于M2不变,所以M小于M2平衡关系受到破坏,导致电动机转速的下降,转差率S上升;它又引起转子电压平衡方程式的变化,使转子电流I2上升。也就是定子电流I1随之增加(由变压器关系可以知道);同时I2增加也是电动机轴上送出的转矩M又回升,直到与M2相等为止。这时电动机转速又趋于新的稳定值。

转矩的类型

转矩可分为静态转矩和动态转矩。

静态转矩是值不随时间变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、缓变转矩和微脉动转矩。

静止转矩的值为常数,传动轴不旋转;

恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩;

缓变转矩的值随时间缓慢变化,但在短时间内可认为转矩值是不变的;

微脉动转矩的瞬时值有幅度不大的脉动变化。

动态转矩是值随时间变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。振动转矩的值是周期性波动的;过渡转矩是机械从一种工况转换到另一种工况时的转矩变化过程;随机转矩是一种不确定的、变化无规律的转矩。

根据转矩的不同情况,可以采取不同的转矩测量方法。

9. 同步电机的基本方程

异步机转速公式的质疑

公式是客观规律的数学表达形式,它只能产生于已有的定律、公式,而不能产生于人为的定义。

经典电机学的异步机转速公式是这样建立的。

首先定义转差率S

令S=(n1-n)/n1(1)

式中:n1为同步转速

n为电机转速

显然,式1是定义式而非公式

由式1,经代数变换得

n=n1·(1-S)(2)

可见式2仍然是定义式,它只不过是式1的另外一种表达形式。

又,由于

n1=60f1/p(3)

这是公式,将式3代入定义式2,于是

n=60f1/p·(1-S)(4)

我们注意到,式4与式2没有本质变化,尽管式3是公式,但它仅仅起到参数变换作用,并没有改变式1、2的定义式性质。因此,我们认为的转速公式4只不过是人为的定义式,在没有经过公式化论证之前,是不能称其为公式的。

2、电机转速的通用公式

异步机转速公式应该严格遵循相关的定理和公式推导得出。作为电动机的一种,异步机转速必然遵循电机转速的普遍规律。

根据动力学,电动机的转速可普遍表为

Ω=PM/M(5)

式中:Ω电动机角速度

PM——机械功率

M——电磁转矩

按电机能量转换守恒,调速状态下电动机的转子(或电枢)功率方程为

PM=ΣPem-Σ△P2(6)

式中:ΣPem——净电磁功率

Σ△P2净损耗功率

因此电机转速为

Ω=ΣPem/M-Σ△P2/M

=Ωok-ΔΩ(7)

其中:Ω=ΣPem/M称为调速理想空载转速

ΔΩ=Σ△P2/M称为转速降

可见,电机转速均可表达为理想空载转速与转速降差值。其中,理想空载转速决定于转子(或电枢)的净电磁功率,转速降则决定于净损耗功率。电机调速有改变理想空载转速和转速降两种方法,异步机的同步转速与电机转速没有直接、必然的联系。

3、理想空载转速与净电磁功率

理想空载转速的含义是:假定在无损耗的理想状态下,电机的全部电磁功率都转化为机械功率所能获得的速度。由于这种假设只有在理想空载条件下才能实现,故称理想空载转速。

在转矩平衡条件下,理想空载转速取决于转子(或电枢)的净电磁功率并与其成正比,考虑到调速的普遍情况,净电磁功率应为

P2=ΣPem

=Pem±Pes(8)

式中Pem为电磁感应输送的电磁功率,Pes为转子控制调速的电传导附加功率。当Pes由外部馈入转子时符号取正,它将使转子净电磁功率增大,实现超同步调速。而当Pes自转子馈出,则符号取负,它使转子净电磁功率减小,调速为低同步。

由式8决定的理想空载转速为

Ωok=(Pem±Pes)/M(9)

公式9表明,电机调速时的理想空载转速可以通过Pem和Pes的控制是到改变。

式9可以写成=Ω0±Ωk(10)

其中Ω0为Pem单独作用下的理想空载转速,ΩK为Pes引起的附加理想空载转速,如果不考虑ΩK的符号

Ωk=Ω0–Ωok

=(Ω0–Ωok)/Ω0·Ω0

=Sk·Ω0(11)

其中

Sk=(Ω0–Ωok)/Ω0

=(n0-n)/n0(12)

称为电转差率,于是有

Ωok=(1±SK)Ω0

及nok=(1±SK)n0(13)

对于自然运行的理想空载转速Ω0,按电机学有

Ω0=Pem/M(14)

Pem=m2E2I2COSΦ2(15)

M=CMΦmI2COSΦ2(16)

可得

Ω0=2πf1/p

折算成每分钟转速

n0=60/2π·Ω0

=60f1/p(19)

说明自然运行状态下的异步机理想空载转速与同步转速相等,将式18代入式12,异步机调速的理想空载转速为

nok=(1±SK)·60f1/p(20)

4、转速降与静差率

调速状态的转速降为

ΔΩ=Ωok-Ω

或Δn=nok-n

=(nok–n)/nok·nok

=jnok(21)

式中j=(nok–n)/nok称为静差率,该式表明,转速降与静差率成正比,可以证明,净损耗功率亦正比于静差率,即

ΣΔP2=jΣPem(22)

故净损耗功率亦称静差功率。

同样亦可证明,

Pes=SKPem(23)

附加电功率故亦称电转差功率。

回顾电机学中的转差功率,由

S=(n1-n)/n1

及PS=SPem

可得PS=Pem-PM

转差功率系指电磁功率与机械功率的差值。对于转差功率的成份属性,表达式没有加以区分,这样就混淆了电功率和损耗功率对电机转速的不同作用。显然,电转差功率影响的是理想空载转速,而静差功率影响的是转速降,前者调速效率高属节能型,后者使调速效率降低属耗能型,而且调速的机械特性也完全不同,前者为改变理想空载转速点的平行曲线族,后者为理想空载转速点不变的汇交曲线族。可见笼统地用转差率和转差功率是无法准确评价调速性能的。例如异步机转子串电阻和串级调速,两者均使转差率改变,但调速效率和特性却明显不同。

5、结论

①异步机转速公式由式20、21可表达为

n=nok(1-j)

=60f1/p·(1±SK)·(1-j)(24)

②凡是高效率的调速,必然是通过净电磁功率改变理想空载转速,同步转速改变与否与调速效率没有必然联系。

③转差率应区分为电转差率和静差率,前者影响理想空载转速,后者影响转速降,改变电转差率的调速是高效率的,而增大静差率的调速是低效率的。

④电机调速的实质在于功率控制,任何调速方法都必然通过对电机轴功率的控制才能实现转速调节。

Ωok=Pem/M±Pes/M

10. 同步发电机发电过程

三相交流同步发电机组回收的地方一是废品站,二是机电维修部,三是旧货市场,所以一台发电机组在不同地方会有不同价格,在废品站价格最低,按斤来计算,在机电维修部回收会接新旧成份折价,价格比较公道,也可以寄挂出售,旧货市场收购水份更大,一买一卖。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
点击我更换图片