电力系统继电保护仿真(电力系统继电保护仿真的

270 2023-01-19 20:21

1. 电力系统继电保护仿真的研究意义

按分类有以下几种保护

1、按被保护对象分类,有输电线保护和主设备保护。

2、按保护功能分类,有短路故障保护和异常运行保护。

3、按保护装置进行比较和运算处理的信号量分类,有模拟式保护和数字式保护。

4、按保护动作原理分类,有过电流保护、低电压保护、过电压保护、功率方向保护、距离保护、差动保护、高频(载波)保护等。

2. 电力系统继电保护原理及仿真

继电保护主要利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。大多数情况下,不管反应哪种物理量,继电保护装置将包括测量部分(和定值调整部分)、逻辑部分、执行部分。

3. 电力系统继电保护研究现状

1、《高压电网继电保护运行技术》

2、《大电流母线的理论基础与设计》

3、《电力系统继电保护原理 第三版》

4、《电力系统串联补偿》

5、《输变电工程的电磁环境》

6、《超导磁储能系统(SMES)及其在电力系统中的应用》

7、《特高压交直流电网》

8、《大截面导线及其相关技术》

9、《风力发电与电力系统》

10、《大电网结构规划》

4. 继电保护原理主要研究的问题

教材:元件保护方面,主要是王维俭老师的书,最经典的应该算《电气主设备继电保护原理与技术》;线路保护方面,感觉最好的应该是朱声石老师的《高压电网继电保护原理与技术》,其它的还有《输电线路新型距离保护》等两者综合的书比较多,比如张保会、尹项根老师的《电力系统继电保护》,葛耀中老师的《新型继电保护与故障测距的原理与技术》等还有一些其它方面的,比如陈德树老师《计算机继电保护原理与技术》等。视频:主要是王维俭老师的发变组保护视频,其它方面的我也不太清楚

5. 继电保护技术对于电力系统的重要性

继电保护有四个基本要求:选择性、速动性、灵敏性、可靠性。

继电保护的选择性是指继电保护动作时,仅将故障元件或线路从电力系统中切除,保证系统无故障部分继续运行;

速动性是指继电保护装置应能尽快地切除故障,以减少设备及在大电流、低电压运行的时间,降低设备的损坏程度,提高系统并列运行的稳定性;

灵敏性是指电气设备或线路在被保护范围内发生短路故障或不正常运行情况时,保护装置的反应能力;可靠性包括安全性和信赖性,这是对继电保护最根本的要求。

6. 电力系统继电保护原理与仿真

1、原理:是当系统内压力高于额定的安全压力时,感应器内碟片瞬时发生移动,通过连接导杆推动开关接头接通或断开,当压力降至额定的恢复值时,碟片瞬复位,开关自动复位,或者简单的说是当被测压力超过额定值时,弹性元件的自由端产生位移,直接或经过比较后推动开关元件,改变开关元件的通断状态,达到控制被测压力的目的。

2、压力开关采用的弹性元件有单圈弹簧管、膜片、膜盒及波纹管等。

3、压力开关有机械式,电子式两大类。 国内空调基本上都是用的上面第一段原理的机械式; 而电子压力开关是通过高精度仪表放大器放大压力信号,通过高速MCU采集并处理数据,内置精密传感器进行补偿,是检测压力、液位信号,实现压力、液位监测和控制的高精度设备。

7. 电力系统继电保护仿真的研究意义和价值

继电保护的内容:

①按被保护对象分类,有输电线保护和主设备保护(如发电机、变压器、母线、电抗器、电容器等保护)。

②按保护功能分类,有短路故障保护和异常运行保护。前者又可分为主保护、后备保护和辅助保护;后者又可分为过负荷保护、失磁保护、失步保护、低频保护、非全相运行保护等。

③按保护装置进行比较和运算处理的信号量分类,有模拟式保护和数字式保护。一切机电型、整流型、晶体管型和集成电路型(运算放大器)保护装置,它们直接反映输入信号的连续模拟量,均属模拟式保护;采用微处理机和微型计算机的保护装置,它们反应的是将模拟量经采样和模/数转换后的离散数字量,这是数字式保护。

④按保护动作原理分类,有过电流保护、低电压保护、过电压保护、功率方向保护、距离保护、差动保护、纵联保护、瓦斯保护等。

研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要使用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路、母线等)使之免遭损害,所以简称继电保护。

继电保护装置必须具有正确区分被保护元件是处于正常运行状态还是发生了故障,是保护区内故障还是区外故障的功能。保护装置要实现这一功能,需要根据电力系统发生故障前后电气物理量变化的特征为基础来构成。

电力系统发生故障后,工频电气量变化的主要特征是:

(1) 电流增大。 短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流。

(2) 电压降低。当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。

(3) 电流与电压之间的相位角改变。正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60°~85°,而在保护反方向三相短路时,电流与电压之间的相位角则是180°+(60°~85°)。

(4) 测量阻抗发生变化。测量阻抗即测量点(保护安装处)电压与电流之比值。正常运行时,测量阻抗为负荷阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大。

不对称短路时,出现相序分量,如两相及单相接地短路时,出现负序电流和负序电压分量;单相接地时,出现负序和零序电流和电压分量。这些分量在正常运行时是不出现的。

利用短路故障时电气量的变化,便可构成各种原理的继电保护。

此外,除了上述反应工频电气量的保护外,还有反应非工频电气量的保护,如瓦斯保护。

常用保护

传统保护

1、电流保护。多用于配电网中(110kv及以下),分为:电流速断保护、限时电流速断保护和定时限过电流保护。

2、距离保护。

3、差动保护。

4、纵联保护。

5、瓦斯保护

新兴保护

基于暂态的保护,如行波保护等。

8. 电力系统继电保护现场作业可靠性研究

可靠性:指保护该动作时动作,不该动作时不动作。确保切除的是故障设备或线路。

选择性:指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备、线路的保护或断路器失灵保护切除故障。避免大面积停电。

灵敏性:指在设备或线路的被保护范围内发生金属性短路时,保护装置应具有必要的灵敏系数。保证有故障就切除。

速动性:指保护装置应能尽快地切除短路故障。其目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围,提高自动重合闸和备用电源或备用设备自动投入的效果等。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
点击我更换图片