什么是低压无功补偿(电压低无功补偿)

243 2023-01-23 01:47

1. 电压低无功补偿

反无功:输入变电站的无功电量。

无功补偿柜会把一些无功电量反馈回变电站,为电站节省电能,也就等效于为工厂节省电能,反无功越大,表示反馈回去的电量越多。

2. 低压无功补偿作用

  无功补偿的基本原理:电网输出的功率包括两部分;

一是有功功率;

二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流滞后于电压90°。而电流在电容元件中作功时,电流超前电压90°.在同一电路中,电感电流与电容电流方向相反,互差180°。  无功补偿的具体实现方式:把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。

3. 无功补偿跟电压有关系吗

1、有功决定频率,无功决定电压,当电压高时,电容器就不能投入了,再投入电容会使电压更高,同时高电压也会伤害电容器自身的安全;

2、你白天的电压就很高了,夜间电压更高,这时是不能投入电容器的,高电压不但对电容有伤害,对其他用电设备也有伤害的;

3、如果功率因数低,特别是在交电费时遇到要交“功率因数”罚款”,则应该提高功率因数,最简单的方法是改变变压器的分节开关,将变压器的电压降下来,然后再投入电容器;

4、如果你的负荷比较小,则可以更换更小容量的变压器,如50kVA,或30kVA的,不但减少了变压器自身的功率损耗,还节省了电能;

5、如果用电容量小,则需要调整的无功补偿量也要细,则需要小容量的电容器,一般单台电容补偿量应该不大于单台用电设备容量的1/3为宜;如果补偿装置内电容器的容量不一致,则应该对补偿装置控制器进行调整和设定。

4. 低压无功补偿功率因数

无功补偿原理:在交流电路中,由电源供给负载的电功率有两种;一种是有功功率,一种是无功功率。有功功率是保持用电设备正常运行所需的电功率,是将电能转换为其他形式能量(机械能、光能、热能)的电功率。   

低压配电网无功补偿的维护措施:提高功率因数的主要方法是采用低压无功补偿技术,我们通常采用的方法主要有三种:随机补偿、随器补偿、跟踪补偿。 

1.  随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。随机补偿适用于补偿电动机的无功消耗,以补励磁无功为主,此种方式可较好地限制用电单位无功负荷。

2.  随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。配变在轻载或空载时的无功负荷主要是变压器的空载励磁无功,配变空载无功是用电单位无功负荷的主要部分,对于轻负载的配变而言,这部分损耗占供电量的比例很大,从而导致电费单价的增加。

3. 跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4kv母线上的补偿方式。适用于100kVA以上的专用配变用户,可以替代随机、随器两种补偿方式,补偿效果好。

5. 低压配电无功补偿的优点

无功功率补偿reactivepowercompensation,简称无功补偿,在电力供电系统中起提高电网的功率因数的作用,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少电网的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。

无功补偿的作用:

⑴补偿无功功率,可以增加电网中有功功率的比例常数。

⑵减少发、供电设备的设计容量,减少投资,例如当功率因数cosφ=0.8增加到cosφ=0.95时,装1kvar电容器可节省设备容量0.52kw;反之,增加0.52kw对原有设备而言,相当于增大了发、供电设备容量。因此,对新建、改建工程,应充分考虑无功补偿,便可以减少设计容量,从而减少投资。

⑶降低线损,由公式δρ%=(1-cosθ/cosφ)×100%得出其中cosφ为补偿后的功率因数,cosθ为补偿前的功率因数则:

cosφ>cosθ,所以提高功率因数后,线损率也下降了,减少设计容量、减少投资,增加电网中有功功率的输送比例,以及降低线损都直接决定和影响着供电企业的经济效益。所以,功率因数是考核经济效益的重要指标,规划、实施无功补偿势在必行。

6. 低压无功补偿不工作什么原因?

您好: 无功过补与否与在高压侧补偿和低压侧补偿是没有关系的,现在的补偿装置都是自动补偿,不管在高压侧补偿还是在低压侧补偿,只要是无功需求满足,补偿装置都不会再工作。 出现过补偿的原因:

1)控制器设置不当。

2)电容器组分组不合理。电表指示无功多少不能作为过补偿的依据,功率因数的值是有功功率在视在功率中的比值。功率因数是否符合要求,与有功、无功的比值有直接关系的。

7. 无功补偿 电压

  电压高对无功补偿的影响:   

1、有功决定频率,无功决定电压,当电压高时,电容器就不能投入了,再投入电容会使电压更高,同时高电压也会伤害电容器自身的安全;   

2、白天的电压就很高了,夜间电压更高,这时是不能投入电容器的,高电压不但对电容有伤害,对其他用电设备也有伤害的;   

3、如果功率因数低,特别是在交电费时遇到要交“功率因数”罚款”,则应该提高功率因数,最简单的方法是改变变压器的分节开关,将变压器的电压降下来,然后再投入电容器;   

4、如果你的负荷比较小,则可以更换更小容量的变压器,如50kVA,或30kVA的,不但减少了变压器自身的功率损耗,还节省了电能;   

5、如果用电容量小,则需要调整的无功补偿量也要细,则需要小容量的电容器,一般单台电容补偿量应该不大于单台用电设备容量的1/3为宜;如果补偿装置内电容器的容量不一致,则应该对补偿装置控制器进行调整和设定。   无功功率补偿Reactive power compensation,简称无功补偿,在电力供电系统中起提高电网的功率因数的作用,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少电网的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。

8. 低压无功功率补偿

① 集中补偿:在高低压配电线路中安装并联电容器组;

② 分组补偿:在配电变压器低压侧和用户车间配电屏安装并联补偿电容器;

③ 单台电动机就地补偿:在单台电动机处安装并联电容器等。

加装无功补偿设备,不仅可使功率消耗小,功率因数提高,还可以充分挖掘设备输送功率的潜力。

确定无功补偿容量时,应注意以下两点:

① 在轻负荷时要避免过补偿,倒送无功造成功率损耗增加,也是不经济的。

② 功率因数越高,每千伏补偿容量减少损耗的作用将变小,通常情况下,将功率因数提高到0.95就是合理补偿.

就三种补偿方式而言,无功就地补偿克服了集中补偿和分组补偿的缺点,是一种较为完善的补偿方式:

⑴因电容器与电动机直接并联,同时投入或停用,可使无功不倒流,保证用户功率因数始终处于滞后状态,既有利于用户,也有利于电网。

⑵有利于降低电动机起动电流,减少接触器的火花,提高控制电器工作的可靠性,延长电动机与控制

9. 低压无功补偿补偿多少

变压器负载率大于60%,功率因数考核标准为0.9时,无功补偿在0.86~0.95间波动属正常范围。

月平均功率因数低于该值罚款,高于该值奖励。

计算公式:有功电度+变损有功电度/根号(有功电度+变损有功电度)平方+(无功电度+变损无功电度)平方配电网无功补偿的主要方式有五种:变电站补偿、配电线路补偿、随机补偿、随器补偿、跟踪补偿。意义⑴ 补偿无功功率,可以增加电网中有功功率的比例常数。

⑵ 减少发、供电设备的设计容量,减少投资,例如当功率因数cosΦ=0.8增加到cosΦ=0.95时,装1Kvar电容器可节省设备容量0.52KW;反之,增加0.52KW对原有设备而言,相当于增大了发、供电设备容量。

因此,对新建、改建工程,应充分考虑无功补偿,便可以减少设计容量,从而减少投资。⑶ 降低线损,由公式ΔΡ%=(1-cosθ/cosΦ)×100%得出其中cosΦ为补偿后的功率因数,cosθ为补偿前的功率因数则:cosΦ>cosθ,所以提高功率因数后,线损率也下降了,减少设计容量、减少投资,增加电网中有功功率的输送比例,以及降低线损都直接决定和影响着供电企业的经济效益。

所以,功率因数是考核经济效益的重要指标,规划、实施无功补偿势在必行。电网中常用的无功补偿方式包括:

① 集中补偿:在高低压配电线路中安装并联电容器组;

② 分组补偿:在配电变压器低压侧和用户车间配电屏安装并联补偿电容器;

③ 单台电动机就地补偿:在单台电动机处安装并联电容器等。

加装无功补偿设备,不仅可使功率消耗小,功率因数提高,还可以充分挖掘设备输送功率的潜力。确定无功补偿容量时,应注意以下两点:

① 在轻负荷时要避免过补偿,倒送无功造成功率损耗增加,也是不经济的。

② 功率因数越高,每千伏补偿容量减少损耗的作用将变小,通常情况下,将功率因数提高到0.95就是合理补偿。

扩展资料:低损耗变压器铁芯损耗的控制变压器损耗中的空载损耗,即铁损,主要发生在变压器铁芯叠片内,主要是因交变的磁力线通过铁芯产生磁滞及涡流而带来的损耗。

最早用于变压器铁芯的材料是易于磁化和退磁的软熟铁,为了克服磁回路中由周期性磁化所产生的磁阻损失和铁芯由于受交变磁通切割而产生的涡流,变压器铁芯是由铁线束制成,而不是由整块铁构成。

1900年左右,经研究发现铁中加入少量的硅或铝可大大降低磁路损耗,增大导磁率,且使电阻率增大,涡流损耗降低。

经多次改进,用0.35mm厚的硅钢片来代替铁线制作变压器铁芯。

1903来世界各国都在积极研究生产节能材料,变压器的铁芯材料已发展到最新的节能材料——非晶态磁性材料如2605S2,非晶合金铁芯变压器便应运而生。

使用2605S2制作的变压器,其铁损仅为硅钢变压器的1/5,铁损大幅度降低。变压器系列的节能效果上述非晶合金铁芯变压器,具有低噪音、低损耗等特点,其空载损耗仅为常规产品的1/5,且全密封免维护,运行费用极低。

我国S7系列变压器是1980年后推出的变压器,其效率较SJ、SJL、SL、SL1系列的变压器高,其负载损耗也较高。80年代中期又设计生产出S9系列变压器,其价格较S7系列平均高出20%,空载损耗较S7系列平均降低8%,负载损耗平均降低24%,并且国家已明令在1998年底前淘汰S7、SL7系列,推广应用S9系列。

S11是推广应用的低损耗变压器。S11型变压器卷铁心改变了传统的叠片式铁心结构。硅钢片连续卷制,铁心无接缝,大大减少了磁阻,空载电流减少了60~80,提高了功率因数,降低了电网线损,改善了电网的供电品质。

连续卷绕充分利用了硅钢片的取向性,空载损耗降低20~35。运行时的噪音水平降低到30~45dB,保护了环境。

10. 无功补偿升高多少电压

减小电压无功率越大,功率跟电流的平方成正比

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
点击我更换图片