低压无功就地补偿(低压无功补偿装置作用)

鑫锐电气 2023-01-30 19:50 编辑:admin 286阅读

1. 低压无功补偿装置作用

低压无功补偿柜都由无功补偿柜柜体,无功补偿控制器,无功补偿柜电力开关,低压电容,低压电抗器以及保护单元等部分组成。

低压无功补偿柜的核心原件是电容和电抗,补偿柜的补偿效果好不好,就是电容和电抗器的匹配好不好,电容和电抗匹配好了,再加一个好的控制器,补偿柜的补偿效果就很好了。

2. 低压无功补偿装置是什么

无功补偿跳闸,无非就两个原因,电容坏了、开关坏了,开关接触不好就容易发热,发热后就自己跳了。多数表现在不定时跳。

有时候功率因数不是很低的时候或者波动不大,那故障电容就没有投入所以正常运行,当功率因数变低(负荷高峰期)或者功率因数波动较大的时候就会出现频繁投切,这时候故障电容被投入,所以跳了。 个人见解,仅供参考。

3. 低压无功补偿装置作用有哪些

1、提高供用电系统及负荷的功率因数

  安装无功补偿装置后,传输的无功功率减少,在传输的有功功率不变的情况下,功率因数提高。

  2、改善电压质量

  3、降低电网的功率损耗

  4、提高设备供电能力

  对一个电气设备来说,其额定容量S一定,由P=Scosφ可知,在同样的电压和电流下,功率因数越高,其输出的有功功率P越大,则在不超过设备的原有设计能力的条件下,可充分发挥设备潜力,提高设备的供电能力。

  5、减少设备容量并节省投资

  在输送同样有功功率的情况下,提高功率因数后,无功功率减少,则所需视在功率减小。从而使电网中设备安装容量减少,这样就节约了基建投资,降低了成本。

  

  无功补偿设备的作用

  1、改善功率因数

  要尽量避免发电机降低功率因数运行,同时也防止向远方负载输送无功引起电压和功率损耗,应在用户处实行低功率因数限制,即采取就地无功补偿措施。

  2、改善电压调节

  负载对无功需求的变化,会引起供电点电压的变化,对这种变化若从电源端(发电厂)进行调节,会引起一些问题,而补偿设备就起着维持供电电压在规定范围内的重要作用。

  3、调节负载的平衡性

  当正常运行中出现三相不对称运行时,会出现负序、零序分量,将产生附加损耗,使整流器波纹系数增加,引起变压器饱和等,经补偿设备就可使不平衡负载变成平衡负载。

  低压无功补偿的作用

  1、提高功率因数,避免力调电费(即罚款);

  2、提高变压器有功输出,提高变压器使用效率;

  3、降低变压器损耗;

  4、降低输送线路损耗;

  5、改善用电环境,提高电网质量;

4. 低压无功补偿的作用

低压用电通常都是感性负载,无功补偿可以减少总电流,减少线路上的电能损耗,减少导线截面,减少电缆的费用,减少了无功功率,还可以使变压器的容量能够有效的利用,S^2=P^2+Q^2 .变压器容量S 是一定的,Q越小,P越大,即可以使用的有功功率越大。

5. 低压无功自动补偿装置

无功补偿装置里面主要是电容器。主要作用是起到负载端无功功率就地补偿作用。可以减少输电线路的电流,提供负载端的电压。

无功补偿的原理是:利用电容和电感电流相差180度的原理,加装电容以后,电容可以向感性负载提供无功功率(严谨的说是电容和电感形成无功功率交换),这样就不需要从发电厂向负载提供无功功率了。

6. 低压无功补偿装置的补偿方式有哪几种

低压无功功率自动补偿原理:

低压无功功率自动补偿控制器采样三相电源中一线电流(如A线)与另外两线的电压(如BC线)之间的相位差,通过一定的运算,得到当前电网的实时功率因数。

此功率因数与设定的投入门限和切除门限比较,在整个投切延时时间内,若在投切门限以内,则不予动作;若小于投入门限,则另投入一组电容器;若大于切除门限或发现功率因数为负时,则切除一组已投入的电容器。再经过投切延时时间,重复比较与投切,直到当前的功率因数达到投切门限以内。

在投切过程中,若发现检测到的电压大于设定的过压保护门限,则按组切除所有已投入的电容;当检测到的电压超过设定的过压保护门限的10%时,则一次性切除所有已投入的电容,用以保护电容器。

在投切时若发现检测到的电流小于欠电流封锁门限,则停止投切动作,避免系统出现循环投切现象。

由于在三相供电中有不同接线方法,不同的接线方法对功率因数的算法也不一样,因此我们规定ARC系列功率因数自动补偿控制仪的电流取自三相供电中的A线,电压取自BC间的线电压,同时为减少现场接线的复杂度,我们在程序中对相位进行自动判别。在三相供电中,我们假设三相的相电压分别为Ua、Ub、Uc,A线电流为Ia则有Ua=Usin(ωt),Ub=Usin(ωt+120°),Uc=Usin(ωt+240°),

从而得到BC间的线电压为Ubc=Ub-Uc= Usin(ωt-90°)

1、若A线负载为纯阻性,则A线电流Ia与A线电压Ua同相,Ia超前Ubc的角度为90°;

2、若A线负载为感性,则A线电流Ia滞后A线电压Ua角度为φ(0°≤φ≤90°),Ia超前Ubc的角度为90°-φ;

3、若A线负载为容性,则A线电流Ia超前A线电压Ua角度为φ(0°≤φ≤90°),Ia超前Ubc的角度为90°+φ。

在我们的功率因数自动补偿控制仪中,为了计算的方便,我们电流相位的采样为电压采样的第二个周期,即若没有相位差Ia滞后Ua的角度为360°。

在实际检测中,假设我们检测到Ia滞后Ubc的角度为α,根据以上的分析得知:

1、若180°<α<270°电路为容性负载,COSφ=COS(270°-α);

2、若α=270°,则电路为纯阻性负载,COSφ=1;

3、若270°<α<360°,则电路为感性负载COSφ=COS(α-270°)。

为方便用户接线,若用户将电压Ubc接成了Ucb,或将Ia的输入接反,根据以上的推断,我们同样可得到:

1、若0°<α<90°,则电路为容性负载,COSφ=COS(90°-α);

2、若α=90°,则电路为纯阻性负载,COSφ=1;

3、若90°<α<180°,则电路为感性负载COSφ=COS(α-90°)。