1. 电力高频变压器原理
中频变压器是超外差式接收装置中特有的一种具有固定谐振回路的变压器,但谐振回路可在一定范围内微调,以使接入电路后仍能达到准确的谐振频率,微调借助于微调电容器或磁芯相对位置的变更完成。
电子管用中频变压器的初、次级通常都是调谐回路,晶体管用的则有双调谐式和单调谐式两种
2. 高频电子变压器原理图
高频变压器是作为开关电源最主要的组成局部。开关电源一般采用半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz 高频脉冲波,然后通过高频变压器进行降压,输出低电压的交流电,高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少。
3. 电力高频变压器原理图解
技术原理是:将直流电高频斩波,再通过高频变压器变换成高频交流电,按使用要求可再将高频交流电变换成工频或直流输出。技术成熟,质量可靠。
扩展:高频逆变器通过高频DC/AC变换技术,将低压直流电逆变为高频低压交流电,然后经过高频变压器升压后,再经过高频整流滤波电路整流成通常均在300V以上的高压直流电,最后通过工频逆变电路得到220V工频交流电供负载使用。高频逆变器的优缺点:高频逆变器采用的是体积小,重量轻的高频磁芯材料,从而大大提高了电路的功率密度,使得逆变电源的空载损耗很小,逆变效率得到了提高。通常高频逆变器峰值转换效率达到90%以上。但是其也有显著缺点,高频逆变器不能接满负荷的感性负载,并且过载能力差。
4. 工频变压器原理
1、工频变压器笨重,体积大,效率低。但波形无畸变, 电路简单,故障率较低。
2、 高频变压器轻,小,效率高。还原成正弦波有畸变,电路复杂。故障率较高。
3、相对而言,高频变压器的优势较大。
4、总体来说,无论电子还是电力,变压器高频化是趋势。但以现有的技术,高频变压器不能完全取代工频变压器,尤其是大功率及电力变压器。
5. 电力高频变压器原理图
高频变压器是作为开关电源最主要的组成局部。开关电源一般采用半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz 高频脉冲波,然后通过高频变压器进行降压,输出低电压的交流电,高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少。
典型的半桥式变压电路中最为显眼的三只高频变压器:主变压器、驱动变压器和辅助变压器(待机变压器)每种变压器在国家规定中都有各自的衡量规范,比如主变压器,只要是200W 以上的电源,其磁芯直径(高度)就不得小于35mm 而辅助变压器,电源功率不超过300W 时其磁芯直径达到16mm 就够了
6. 高频变压器的原理
高频交流电源的基本工作原理及结构:把外部提供的50Hz的交流电直接整流成高压直流电,然后采用功率器件MOS管或IGBT经过电容和电感组成的LC震荡电路将直流电逆变为高频交流电,高频交流电通过高频变压器变成低压高频电源输出。
高频感应加热电源通常采用逆变调功方式,逆变调功可以分为三类:
(1)频率调制(PFM)。频率调制的方法就是调节逆变开关管的开关频率,从而改变输出阻抗来达到调节输出功率的目的。这种调功方式比较常用,优点是调节方法比较简单,而且较容易实现软开关。但是,功率调节线性不好,而且调节范围不大。
(2)脉冲密度调制(PDM)。PDM就是通过控制脉冲密度,从而控制输出平均功率,来达到控制功率的目的。这种控制方法较容易实现,但是由于是问断加热,所以加热效果不好。
(3)脉冲宽度调制(PWM)。PWM通过调节逆变开关管的一个周期内导通时间来调节输出功率。这种方法等同于普通开关电源的调制方法,调节线性好,范围大,但是不容易实现软开关。
基本原则
高频电源选择主要考虑以下几方面:
(1)结构形式。根据焊接设备的情况选择单体式或分体式。
(2)加热功率。根据加热工件的大小确定功率,一般锯片、薄壁钻焊接的功率为15~25kW,滚筒、磨盘焊接选择功率36~46kW。
(3)振荡频率。振荡频率与焊接效率及深度有关,锯片薄壁钻焊接频率为15~50kHz。硬质合金等导磁率低的材料焊接频率为150~250kHz。
(4)感应圈的匝数范围。有些电源可以单匝或多匝,有些电源必需是多匝。用户可以根据高频电源输出变压器、加热工件的尺寸、加热功率等因素综合考虑确定感应圈的结构。一般多匝效率高,频率会低些。
(5)测温与控温。随着焊接质量要求的不断提高,要求在焊接过程中控制焊接温度,一般采用红外线测温专用的温度控制器控制恒定的温度。
学科
主要应用于电子结构学科。
- 相关评论
- 我要评论
-