1. 三相一体式电压互感器的工作原理
将电力系统的高电压的电器变成我们工程系统及生产所需要的低电压的电器.电压互感器与电力测量仪表配合使用可测量电力系统的电压和电能.电压互感器与继电器配合使用可对电力配电系统发生的一些故障进行一些针对性的行之有效的保护.但电压互感器与变压器是不同的,他的主要作用户是传递电压信息
2. 三相电压互感器原理图
三相电流互感器主要是测量三相不平衡的时候用,作为电流指示,或者三相分别计费使用。
3. 三相一体式电压互感器的工作原理是什么
漏电保护器工作原理
将漏电保护器安装在线路中,一次线圈与电网的线路相连接,二次线圈与漏电保护器中的脱扣器连接。当用电设备正常运行时,线路中电流呈平衡状态,互感器中电流矢量之和为零(电流是有方向的矢量,如按流出的方向为“+”,返回方向为“-”,在互感器中往返的电流大小相等,方向相反,正负相互抵销)。由于一次线圈中没有剩余电流,所以不会感应二次线圈,漏电保护器的开关装置处于闭合状态运行。当设备外壳发生漏电并有人触及时,则在故障点产生分流,此漏电电流经人体—大地—工作接地,返回变压器中性点(并未经电流互感器),致使互感器申流入、流出的电流出现了不平衡(电流矢量之和不为零),一次线圈申产生剩余电流。因此,便会感应二次线圈,当这个电流值达到该漏电保护器限定的动作电流值时,自动开关脱扣,切断电源。
4. 三相一体式电压互感器的工作原理是
三相四线接互感器的原理是采用三台电流互感器,接成完全星形接法,用以测量三相平衡或不平衡线路中的三相电流。
采用二台电流互感器,接成不完全星形,用以测量三相平衡或不平衡线路中的三相电流。
大功率电动机中的过载保护,往往由于电流大,而无法购到相应的热继电器,在这样的情况下,一般采用加装电流互感器的方法来解决。
采用二台电流互感器,接成不完全星形,用以测量三相平衡或不平衡线路中的三相电流。
5. 电压互感器的基本原理
电压互感器工作原理产生交变磁通,直流电无法工作。
6. 电压互感器的基本工作原理
电压互感器的主要结构和工作原理类同于变压器。电压互感器的一次绕组匝数较多,并接于被测高压侧上,而二次绕组的砸数较少,二次负荷比较恒定,接于高阻抗的测量仅表和继电器电压绕组,因此,在正常运行时,电压互感器接近于空载状态。电压互感器的一二次绕组额定电压,称为电压互感器的额定变比。
电压互感器容量很小,其负载通常很微小,而且恒定。所以电压互感器一次侧可视为一个恒压源,它基本上不受二次负载的影响。而变压器则不同,它的一次电压受二次负载的影响较大。二次侧所接测量仪表和继电器的电压线圈阻抗很大,在正常运行时,电压互感器几乎是处于空载状态下运行
电流互感器是一种电流变压器,电流互感器的工作原理。只是其副绕组仅与仪表和继电器的电流绕组相串联。
电流互感器一次绕组串联在电路中并且匝数很少,一次绕组中的电流完全取决于被测电路的负荷电流,与二次电流大小无关。变压器则相反,一次电流的大小是随二次电流的变化而变化。
电流互感器二次绕组所接仪表和继电器电流绕组阻抗很小,所以在正常情况下接近于短路状态下运行。普通变压器的低压侧是不允许短路运行的
变压器的一次电压决定了铁芯中的主磁通、主磁通又决定了二次电势。因此次电压不变,二次电势也基本不变。而电流互感器则不然,当二次回路中的阻抗变化时,也会影响二次电势。在某一定值的一次电流作用下,感应二次电流的大小決定于二次回路中的阻抗,当二次阻抗大时二次电流小,用于平衡二次电流的一次电流就小,激磁就增多,二次电势也就高。反之,二次阻抗小时,感应的二次电流就大于一次电流中用于平衡二次电流的部分就大,激磁就减少,则二次电势也就低。
电流互感器一次电流产生的磁通大部分被二次电流平衡掉。若二次开路,一次电流将全部用来激磁,使铁芯饱和,将在二次感应出高电压并使铁芯过热。因此,电流互感器二次是不允许开路的。


- 相关评论
- 我要评论
-