1. 直线电机选型软件
是微信公众号的查询端口,高端一点的变速箱油品牌微信公众号底菜单里都会有这种查询系统,可以自己选择车型,也可以用车架号直接匹配,我就是做这种系统的
2. 直线电机型号
说起直线电机,英文是linear servo motor。说起来,在我们现在常见的马达,都是旋转电机。
电机的发展史,从电机的发展历史,来说电机的各类功能应用和优势。
从电磁感应的开始,电动机的发展就没有停止过。
全球第一台严格意义上面的电机是俄罗斯科学家发明Moritz Hermann Jacobi发明第一台可实用的整流电机。
从这开始之后的百年,电动机一直都是围绕感应式电机在发展,并且最终不断发展形成我们现在看到的绕线定子,卷绕型或鼠笼型电机。
后期在直流电机与交流电机的各类应用领域,逐步发展成为了极大方向。
1、直流无刷电机,空心杯电机。
2、交流步进电机,伺服电机,直线电机,以及目前在工业领域研发的U型电机。
在所有的电机发展历程中,我们基本能够看到这样一个趋势:
扭矩不断增大,精度控制不断增加。
这里要详细说一下这两个特性。我们常说的电机扭矩,反馈出来的就是电机的力有多大?
比如说,玩具赛车的扭矩,可能只有0.2N/m,大型的电动汽车的扭矩可以达到250N/m—900N/m,反馈出来的就是电力输出的力很大。
比较常见的重型电动机应用场景,例如:破碎机,港机起重机,石油抽油机等等。以及超大型机床等等。大型的扭矩都达到10多万N/M.同样的价格也极其昂贵。
新能源汽车电机结构
精度控制,是对新场景应用的必然要求。
电机的精度控制,很多大众朋友接触的不多。在工业领域极为常见。例如我们需要起重机提升一个货柜10米高,那么就涉及到最简单的精度控制。
当今,比较常见的使用电机,进行精度控制的场景,是工业领域的传送带。
那么旋转电机是怎么进行精度控制的?
通过在电机后端,链接电机的转子的编码器,通过旋变形式的编码器,或者光电形式的编码器实现转的角度测量。
用最通俗的话说,如果电机转动1°,对应的编码器就可以记录下来一次,那么换算出来,就可以得到直线的距离。
马上就说道直线电机了,别急!
这种携带编码器控制的伺服电机,成本势必增高了。更主要的是这种旋转电机的编码器,目前比较好的分辨等级达到23位,也就是说这种以弧度进行精度区分的编码器,是有精度的局限性的。那么有没有办法在一些特殊的领域,需要精度控制比较高,并且主要进行直线运动的领域,使用直线运动的电机?
答案肯定是可以的,如今应用直线电机,主要的优势就在于其更高的精度,可达到μm级别。这种直线电机在激光加工机床具有极好的应用价值。
1、直线电机的原理:
行业内,把直线电机也叫做“直驱”,所以你如果看到直驱,那就是在描述直线电机和DD马达两种产品。记住啊,行业内的直驱是包含DD马达的。
直线电机的原理并不复杂.你可以理解为把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就是一台直线电机。
如果同旋转的电机进行对应去理解,在直线电机中,相当于旋转电机定子的,叫初级;相当于旋转电机转子的,叫次级,初级中通过交流电,次级就在电磁力的作用下沿着初级做直线运动。
从电磁感应的角度来分析:上图的两种平板的直线电机,(a)一种为扁平式直线电机,(b)为双扁平式的直线电机。
我们以(b)中的情况来说明电磁力的变化,初级是上下两侧,永磁体提供完整的电磁回路。在次级线圈中的导线恰好能够切割电磁感性线,产生安培力,根据左手定则,我们能够看到次级会向左,或者向右运动。
2、直线电机的种类:
1、扁平式电机
2、DD马达(直驱电机)
这种直驱形式的DD马达,可以提供较大的力矩。
3、音圈电机
音圈电机在原理上面,同直线电机相同,可以简单的理解为是线圈匝数较少的直线电机。
3、直线电机的主要玩家
目前中国市场更主要的直线电机玩家,并不多,主要集中在华南。
国内直驱伺服领域,驱动方面做的最好的是高创,在直线电机市场雅科贝思的市场规模最大。目前直驱市场,主要的玩家是自身设备比较长使用企业。例如大族激光等等。
4、直线电机主要应用的场景
主要使用领域包括:激光设备,3C非标设备例如检测,贴合等等。还包括对洁净度要求比较高的医药领域。
5、直线电机市场规模
根据行业内权威机构调研,直驱市场总体规模大约20亿。目前仍然是属于起步阶段。
3. 直线电机选型计算实例
没法看,编码器是配合电机的 ,完全没有规定什么电机配什么编码器。
编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺。按照读出方式编码器可以分为接触式和非接触式两种;按照工作原理编码器可分为增量式和绝对式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
4. 直线电机如何选型
伺服电机的选型计算方法 :
一、转速和编码器分辨率的确认。
二、电机轴上负载力矩的折算和加减速力矩的计算。
三、计算负载惯量,惯量的匹配,安川伺服电机为例,部分产品惯量匹配可达50倍,但实际越小越好,这样对精度和响应速度好。
四、再生电阻的计算和选择,对于伺服,一般2kw以上,要外配置。
五、电缆选择,编码器电缆双绞屏蔽的,对于安川伺服等日系产品绝对值编码器是6芯,增量式是4芯。 以上的选择方法只考虑到电机的动力问题,对于直线运动用速度,加速度和所需外力表示,对于旋转运动用角速度,角加速度和所需扭矩表示,它们均可以表示为时间的函数,与其他因素无关。很显然。电机的最大功率P电机,最大应大于工作负载所需的峰值功率P峰值,但仅仅如此是不够的,物理意义上的功率包含扭矩和速度两部分,但在实际的传动机构中它们是受限制的。用 峰值,T峰值表示最大值或者峰值。电机的最大速度决定了减速器减速比的上限,n上限= 峰值,最大/ 峰值,同样,电机的最大扭矩决定了减速比的下限,n下限=T峰值/T电机,最大,如果n下限大于n上限,选择的电机是不合适的。
5. 直线电机设计软件
首先,在直线电动机的基本型式与结构方面,我们以直线感应电动机为主,其结构包括圆筒型、平面双边型和单边型,还专门设计了特殊结构型式的直线电动机,如外壳动次级型式[6]等特殊结构型式;其次,在电磁方案的设计上,采用了计算机进行多方案优化设计;最后,在初、次级的材料和结构上作了一些新的尝试。通过以上工作,从而使直线电机的性能完全适合于电磁式冲压机的工作需要。直线电动机主要是为负载提供直线式定位运动。它可以减少旋转部分和直线部分转化的机械部分,例如,滚珠丝杠,齿轮齿条,齿型带。下面便是采用直线电机带来的优势列表:直线电机的优点简单的机械结构,最小的运动部件直线推进式电机,无后冲,无需包装速度范围宽,从微米/秒到超过10米/秒加速度高,推力最大可达负载的20G比率运动平滑,真正的无声运动无需维护的电机,没有任何内部的运动部件管式直线电机与旋转电机在直线运动机构应用方面的比较:直线电机旋转/直线转换直线推进必须有旋转到直线运动形式之间的转变最小的维护更多的维护没有内部运动部件更多的外部包装完全无声运动噪声大自身非常低的惯量更高的惯量为什么使用管状直线电机简易很明显,管状直线电机结构相当简单,主要由磁杆和环形线圈绕成的滑块组成,使用相当简便。区别于其他的直线电机,特点有:无需精度的气隙无需精密的安装没有华丽的动力滑块高效率这是一款效率非常高的电机设计方式。电枢的线圈完全环绕在磁场周围,以获得最佳的能量利用。所有标准电机在使用时钧不需要任何的冷却装置。此直线电机可轻松地运用在任何工业机械制造领域。区别于其他的直线电机,特点有所有线圈均切割磁力线以实现直线推力运动高信价比组件的方案管式直线电机可作为“即插即用”型组件使用。此直线电机对于所有工业领域机械制造商均可适用。区别于其他的直线电机组件和平台,特点有单轴导轨设计用标准的固定组件可实现单轴系统或组装成XYZ多轴系统可应用于无尘环境和防水环境管式直线电机其他的技术优势电机时间常数小持续推力(可用霍尔反馈或软件弦波式信号反馈)。平滑,完美的直线运动/电流取决于运行距离。
6. 直线电机选型需要哪些参数
X轴的线性马达提供的运动更为复杂,动力更为强劲,所以相比之下X轴的线性马达更好。
X轴的线性马达就是横向运动,而Z轴的线性马达则稍微有点不同。Z轴的线性马达依然是圆形的,它的中间有个磁柱,其中的"动子"沿着磁柱上下运动。
线性马达也叫做直线电机。从字面上可以理解其是做线性直线运动,它的结构可以看成是普通马达按径向切开,然后展平。
普通电机工作时需要一个连接定子与转子的“桥梁”以支撑动子平稳转动。而直线电机则不需要,由于是展平的,它的“定子”和“动子”是上下结构的,可以通过磁力保持两部分不接触,类似于磁悬浮列车的结构。而且它“定子”和“动子”有了新的名字叫做“初级”和“次级”。
而且也不想普通电机一样,只有转子动,外部始终不动。直线电机的两部分,可以是“初级”动,“次级”不动。也可以是“初级”不动,“次级”动。


- 相关评论
- 我要评论
-