直线感应电机的应用(直线感应电机的应用场合

鑫锐电气 2022-12-27 21:57 编辑:admin 286阅读

1. 直线感应电机的应用场合

首先,在直线电动机的基本型式与结构方面,我们以直线感应电动机为主,其结构包括圆筒型、平面双边型和单边型,还专门设计了特殊结构型式的直线电动机,如外壳动次级型式[6]等特殊结构型式;其次,在电磁方案的设计上,采用了计算机进行多方案优化设计;最后,在初、次级的材料和结构上作了一些新的尝试。通过以上工作,从而使直线电机的性能完全适合于电磁式冲压机的工作需要。直线电动机主要是为负载提供直线式定位运动。它可以减少旋转部分和直线部分转化的机械部分,例如,滚珠丝杠,齿轮齿条,齿型带。下面便是采用直线电机带来的优势列表:直线电机的优点简单的机械结构,最小的运动部件直线推进式电机,无后冲,无需包装速度范围宽,从微米/秒到超过10米/秒加速度高,推力最大可达负载的20G比率运动平滑,真正的无声运动无需维护的电机,没有任何内部的运动部件管式直线电机与旋转电机在直线运动机构应用方面的比较:直线电机旋转/直线转换直线推进必须有旋转到直线运动形式之间的转变最小的维护更多的维护没有内部运动部件更多的外部包装完全无声运动噪声大自身非常低的惯量更高的惯量为什么使用管状直线电机简易很明显,管状直线电机结构相当简单,主要由磁杆和环形线圈绕成的滑块组成,使用相当简便。区别于其他的直线电机,特点有:无需精度的气隙无需精密的安装没有华丽的动力滑块高效率这是一款效率非常高的电机设计方式。电枢的线圈完全环绕在磁场周围,以获得最佳的能量利用。所有标准电机在使用时钧不需要任何的冷却装置。此直线电机可轻松地运用在任何工业机械制造领域。区别于其他的直线电机,特点有所有线圈均切割磁力线以实现直线推力运动高信价比组件的方案管式直线电机可作为“即插即用”型组件使用。此直线电机对于所有工业领域机械制造商均可适用。区别于其他的直线电机组件和平台,特点有单轴导轨设计用标准的固定组件可实现单轴系统或组装成XYZ多轴系统可应用于无尘环境和防水环境管式直线电机其他的技术优势电机时间常数小持续推力(可用霍尔反馈或软件弦波式信号反馈)。平滑,完美的直线运动/电流取决于运行距离。

2. 直线感应电机的应用场合是

利用电能直接产生直线运动的电动机。其工作原理类似于相应的旋转式电动机,结构上则可看作是由相应的旋转电机沿径向切开,拉直演变而成。直线电动机包括定子和动子两个主要部分。在电磁力作用下,动子带动外界负载运动作功。在需要直线运动的场合,采用直线电动机可使装置的总体结构得到简化,多用于各种定位系统和自动控制系统。大功率的直线电动机可用于电气铁路高速列车的牵引及鱼雷的发射等装置中。

直线电动机按原理分为直流直线电动机、交流直线异步电动机、直线步进电动机和交流直线同步电动机,其中前3种应用较多。

3. 直线感应电动机有哪几种结构形式

直线电机的优点

1、结构简单,直线电机不需要经过中间转换机构而直接产生直线运动,使结构大大简化2、高加速度,这是直线电机驱动,相比其他丝杠、同步带和齿轮齿条驱动的一个显著优势

3、适合高速直线运动,因为不存在离心力的约束,普通材料亦可以达到较高的速度

4、初级绕组利用率高,在管型直线感应电机中,初级绕组是饼式的,没有端部绕组,因而绕组利用率高

5、无横向边缘效应

6、容易克服单边磁拉力问题,基本不存在单边磁拉力的问题

7、易于调节和控制,通过调节电压或频率,或更换次级材料,可以得到不同的速度、电磁推力,适用于低速往复运行场合

8、适应性强,直线电机的初级铁芯可以用环氧树脂封成整体,具有较好的防腐、防潮性能,便于在潮湿、粉尘和有害气体的环境中使用;而且可以设计成多种结构形式,满足不同场所的需要

直线电机的缺点

1、效率和功率因数较低

2、起动推力易受到电压波动的影响

3、运行速度范围受到电机极距的限制

4、馈电比较复杂

5、散热较困难

  

4. 直线感应电动机

直线电机是直接产生直线运动的电动机。它可以看成是旋转电机演化而来的。与旋转电机相对应,直线电机按机种分类可分为直线感应电动机、直线同步电动 机、直线直流电动机和其它直线电动机(如直线步进电动机等)。旋转电动机的定子和转子,在直线电动机中称为初级和次级。为了在运动过程中始终保持初级和次级耦合,初级侧或次级侧中的一侧必须做得较长。在直线电动机中,直线感应电动机应用最广泛,因为它的次级可以是整块均匀的金属材料,即采用实芯结 构,成本较低,适宜于做得较长。

一般电机的运动是旋转运动,需要加传动结构才能变成直线。直线电机可以通过对电机控制,无需另外加传动结构可以实现直线运动。如英纳仕智能的直线步进电机,根据应用需要,有贯穿式和固定轴式,电机安装尺寸包括20、28、35、42 、57 、86等,丝杆有T型丝杆和滚珠丝杆。

5. 直线感应电机的应用场合有哪些

在直线感应电动机初级的多相绕组中通入多相电流后,产生的气隙基波磁场是沿直线移动的,称为行波磁场。

当绕组电流交变一次,气隙磁场在空间移过一对极。

行波磁场切割次级导条,在导条中产生感应电动势和电流,导条电流和气隙磁场相互作用,产生切向电磁力,次级因此而沿行波磁场运动的方向移动。

直线感应电动机的速度与电机极距及电源频率成正比,改变极距或电源频率即可改变直线感应电动机运动的速度。

改变直线电机初级绕组的通电相序,即可改变次级的运动方向。

6. 直线感应电动机的理论和电磁设计方法

1.额定电压(VDC):是电机上加载的直流电压,所有电机的额定参数都是在此基础上测得。这个数值一般都是在电机设计之初就确定了。电机允许高于或者低于额定电压使用,但是高于额定电压,会降低电机的寿命,低于额定电压是没有问题的。

2.额定转速(rpm):电机在室温25℃时,在额定电压和额定扭矩下的转速。

3.额定转矩(mNm/cNm):电机在室温25℃时,额定电压和额定转速下的扭矩,这是电机连续运行(S1工作制)时的最大电流,在持续运行中超过这个电流,会导致电机绕组烧毁。

7. 直线电机感应板的作用

线性马达是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成。

线性马达的工作原理类似于打桩机,实际上是一个依靠线性形式运动的弹簧质量块,将电能直接转换为直线运动机械能的发动模块。线性马达依靠交流电压驱动压靠与弹簧连接的移动质量块的音圈,音圈在弹簧的共振频率下被驱动时,使整个传动器振动。由于直接驱动质量块做线性运动,所以响应速度非常快,振感也非常的强。

线性马达的优势

(1)结构简单。管型直线电机不需要经过中间转换机构而直接产生直线运动,使结构大大简化,运动惯量减少,动态响应性能和定位精度大大提高;同时也提高了可靠性,节约了成本,使制造和维护更加简便。它的初次级可以直接成为机构的一部分,这种独特的结合使得这种优势进一步体现出来。

(2)适合高速直线运动。因为不存在离心力的约束,普通材料亦可以达到较高的速度。而且如果初、次级间用气垫或磁垫保存间隙,运动时无机械接触,因而运动部分也就无摩擦和噪声。这样,传动零部件没有磨损,可大大减小机械损耗,避免拖缆、钢索、齿轮与皮带轮等所造成的噪声,从而提高整体效率。

(3)初级绕组利用率高。在管型直线感应电机中,初级绕组是饼式的,没有端部绕组,因而绕组利用率高。

(4)无横向边缘效应。横向效应是指由于横向开断造成的边界处磁场的削弱,而圆筒型直线电机横向无开断,所以磁场沿周向均匀分布。

8. 直线感应电机的应用场合是什么

原理:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。

如果初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。直线电机的驱动控制技术一个直线电机应用系统不仅要有性能良好的直线电机,还必须具有能在安全可靠的条件下实现技术与经济要求的控制系统。

随着自动控制技术与微计算机技术的发展,直线电机的控制方法越来越多。