1. 异步电动机极对数怎么看
电机转速与频率的公式 n=60f/p, n——电机的转速(转/分); 60——每分钟(秒);f——电源频率(赫芝); p——电机旋转磁场的极对数。3000转/分的是一对极的;1500转/分的电机是二对极的;1000转/分的电机是三对极的;750转/分的电机是四对极的;600转/分的电机是五对极的;对于异步电机和直流电机,则是转速与此相近;电机型号里含有: Y250M-4 最后一个数字4,代表4极电机
2. 同步电动机极对数
1、异步电动机的同步转速是指加在电机输入端的交流电产生的旋转磁场的速度,这个速度就叫同步速度,计算公式是n=60f/P,f:交流电的频率,P:电机极对数,以国内电网50Hz为例,对于4极电机(2对极)的同步速度=60×50/
2=1500RPM。
2、异步电动机的转子速度在理论空载下等于同步速度,但实际上不可能做到。两者之差为转差速度,这个值除以同步速度则得到转差率。负载越大,转子速度越小,转差率越大。
实际应用中:电机铭牌上的速度为转子速度。三相异步电动机同步转速与电机极数有关:2电机同步转速为3000转/分。4电机同步转速为1500转/分。6电机同步转速为1000转/分。8电机同步转速为750转/分。
额定转速与电机转差率有关,转差率各个厂家的产品有差异,一般在4%左右。比如4极电机的额定转速一般在1440转/分左右。扩展资料当电磁力矩与阻力力矩(摩擦力矩与负载力矩之和)平衡时,转子以匀速旋转。因此,异步电机运行正常。
这就是为什么这类电机被称为“异步”电机的原因。由于转子内的电流不是由电源供电,而是由电磁感应产生的,所以这种电动机又称感应电动机。
3. 电动车电机极对数怎么看
看型号,型号最后一个数字就是电动机的极数。
二、看转速,可以根据转速计算出电动机的极数。
公式:电动机极数=磁极对数*2磁极对数=频率(50)*时间(60秒)/转比如转速为1450转/分的电动机就是50*60/1450=2则电动机的极数为2*2=4就是4极电动机。
4. 电动机的极对数怎么确定?
电机的级数极指的是发电机转子在转子线圈通入励磁电流之后形成的磁极。也就是说形成了几个南北磁极。
简单地说就是转子每转一圈在定子的线圈的一匝中能感应形成几个周期电流。不同的极数要产生50hz电势就需要不同的转速。50HZ*60秒/分(即3000)除以极数就是电机每分钟的转的圈数。
电动机也是一样的道理,是发电机的一个逆过程。
极数反映出电动机的同步转速,2极同步转速是3000r/min,4极同步转速是1500r/min,6极同步转速是1000r/min,8极同步转速是750r/min。==========================同异步交流电动机1,同步转速这个转速与电源的频率和电机的极数有关。计算公式是n0=60X50/P (P极对数)所以,电机的同步转速 有:3000,1500,1000,750,,,,,电机的极数可以很多,但电机的体积会变大。2,异步转速电机在工作时,有一定的转差,(所以才叫异步),所以根据你的电机负载,转速会有一定的变化,计算公式是 n=(1-S)×n0 ,其中S 是转差率。
在样本上的额定转速,是在电满载时的数据。
如果电机工作时不能满载,那电机的转速会比额定值高。
5. 六极异步电动机的极对数
普通三相电机额定转速有:
1.
四极电机额定转速:1440转/每分钟。
2.
二极电机额定转速2880转/每分钟。
3.
六极电机额定转速960转/每分钟。
4.
八极电机额定转速720转/每分钟。
5.
十极电机额定转速580转/每分钟。
额定转速是电机加上额定负载时的转速,转子需要慢的多一点才能产生足够的转动力矩。
空载时转子只需要推动转子本身,稍慢一点点就能产生足够的转动力矩。
电动机的异步转速:
1.
八极的约735转/分左右。
2.
六极的约980转/分左右。
3.
四极的约1475转/分左右。
4.
二极的约2970转/分左右。
6. 异步电机有极对数吗
三相电动机的极数是极对数的2倍。三相四极电动机的极对数是2。
7. 异步电动机的极对数怎么算
三相异步电动机转速公式为: n=60f/p(1-s)从上式可见,改变供电频率 f 、电动机的极对数 p 及转差率 s 均可太到改变转速 的目的。从调速的本质来看, 不同的调速方式无非是改变交流电动机的同步转速 或不改变同步转两种。 在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电 阻调速、转波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合 器等调速。 改变同步转速的有改变定子极对数的多速电动机, 改变定子电压、 频 率的变频调速有能无换向电动机调速等。 从调速时的能耗观点来看, 有高效调速方法与低效调速方法两种: 高效调速指时 转差率不变, 因此无转差损耗, 如多速电动机、 变频调速以及能将转差损耗回收 的调速方法(如串级调速等) 。有转差损耗的调速方法属低效调速,如转子串电 阻调速方法, 能量就损耗在转子回路中; 电磁离合器的调速方法, 能量损耗在离 合器线圈中; 液力偶合器调速, 能量损耗在液力偶合器的油中。 一般来说转差损 耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。 一、变极对数调速方法这种调速方法是用改变定子绕组的接线方式来改变笼型电动机定子极对数达到 调速目的,特点如下: 具有较硬的机械特性,稳定性良好; 无转差损耗,效率高; 接线简单、控制方便、价格低; 有级调速,级差较大,不能获得平滑调速; 可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 本方法适用于不需要无级调速的生产机械, 如金属切削机床、 升降机、起重设备、 风机、水泵等。 二、变频调速方法变频调速是改变电动机定子电源的频率, 从而改变其同步转速的调速方法。 变频调速系统主 要设备是提供变频电源的变频器, 变频器可分成交流-直流-交流变频器和交流-交流变频 器两大类,目前国内大都使用交-直-交变频器。其特点: 效率高,调速过程中没有附加损耗; 应用范围广,可用于笼型异步电动机; 调速范围大,特性硬,精度高; 技术复杂,造价高,维护检修困难。 本方法适用于要求精度高、调速性能较好场合。 三、串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差, 达到调 速的目的。 大部分转差功率被串入的附加电势所吸收, 再利用产生附加的装置, 把吸收的转 差功率返回电网或转换能量加以利用。 根据转差功率吸收利用方式, 串级调速可分为电机串 级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为: 可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高; 装置容量与调速范围成正比,投资省,适用于调速范围在额定转速 70%- 90%的生产机械 上; 调速装置故障时可以切换至全速运行,避免停产; 晶闸管串级调速功率因数偏低,谐波影响较大。 本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。 四、绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻, 使电动机的转差率加大, 电动机在较低的转速下运行。 串入的电阻越大,电动机的转速越低。此方法设备简单, 控制方便,但转差功率以发热的形 式消耗在电阻上。属有级调速,机械特性较软。 五、定子调压调速方法当改变电动机的定子电压时, 可以得到一组不同的机械特性曲线, 从而获得不同转速。 由于 电动机的转矩与电压平方成正比, 因此最大转矩下降很多, 其调速范围较小, 使一般笼型电 动机难以应用。 为了扩大调速范围, 调压调速应采用转子电阻值大的笼型电动机, 如专供调 压调速用的力矩电动机, 或者在绕线式电动机上串联频敏电阻。 为了扩大稳定运行范围, 当 调速在 2:1 以上的场合应采用反馈控制以达到自动调节转速目的。 调压调速的主要装置是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗 器、自耦变压器以及晶闸管调压等几种。晶闸管调压方式为最佳。调压调速的特点: 调压调速线路简单,易实现自动控制; 调压过程中转差功率以发热形式消耗在转子电阻中,效率较低。 调压调速一般适用于 100KW 以下的生产机械。 六、电磁调速电动机调速方法电磁调速电动机由笼型电动机、 电磁转差离合器和直流励磁电源(控制器) 三部分组成。直 流励磁电源功率较小, 通常由单相半波或全波晶闸管整流器组成, 改变晶闸管的导通角, 可 以改变励磁电流的大小。 电磁转差离合器由电枢、 磁极和励磁绕组三部分组成。 电枢和后者没有机械联系, 都能自由 转动。 电枢与电动机转子同轴联接称主动部分, 由电动机带动; 磁极用联轴节与负载轴对接 称从动部分。 当电枢与磁极均为静止时, 如励磁绕组通以直流, 则沿气隙圆周表面将形成若 干对 N、S 极性交替的磁极,其磁通经过电枢。当电枢随拖动电动机旋转时,由于电枢与磁 极间相对运动, 因而使电枢感应产生涡流, 此涡流与磁通相互作用产生转矩, 带动有磁极的 转子按同一方向旋转,但其转速恒低于电枢的转速 N1,这是一种转差调速方式,变动转差 离合器的直流励磁电流,便可改变离合器的输出转矩和转速。电磁调速电动机的调速特点: 装置结构及控制线路简单、运行可靠、维修方便; 调速平滑、无级调速; 对电网无谐影响; 速度失大、效率低。 本方法适用于中、小功率,要求平滑动、短时低速运行的生产机械。 七、液力耦合器调速方法液力耦合器是一种液力传动装置, 一般由泵轮和涡轮组成, 它们统称工作轮, 放在密封壳体 中。壳中充入一定量的工作液体, 当泵轮在原动机带动下旋转时, 处于其中的液体受叶片推 动而旋转,在离心力作用下沿着泵轮外环进入涡轮时,就在同一转向上给涡轮叶片以推力, 使其带动生产机械运转。 液力耦合器的动力转输能力与壳内相对充液量的大小是一致的。 在 工作过程中,改变充液率就可以改变耦合器的涡轮转速,作到无级调速,其特点为: 功率适应范围大,可满足从几十千瓦至数千千瓦不同功率的需要; 结构简单,工作可靠,使用及维修方便,且造价低; 尺寸小,能容大; 控制调节方便,容易实现自动控制。 本方法适用于风机、水泵的调速。
8. 异步电机 极对数
三相异步电动机的极数就是旋转磁场的极数。旋转磁场的极数和三相绕组的安排有关。
当每相绕组只有一个线圈,绕组的始端之间相差120度空间角时,产生的旋转磁场具有一对极,即p=1;当每相绕组为两个线圈串联,绕组的始端之间相差60度空间角时,产生的旋转磁场具有两对极,即p=2。
同理,如果要产生三对极,即p=3的旋转磁场,则每相绕组必须有均匀安排在空间的串联的三个线圈,绕组的始端之间相差40度(=120度/p)空间角。扩展资料在输出功率不变的情况下,电机的极对数越多,电机的转速就越低,但它的扭矩就越大。所以在选用电机时,考虑负载需要多大的起动扭矩。
由于在中国三相交流电的频率为50Hz,因此2极同步转速是3000r/min,4极同步转速是1500r/min,6极同步转速是1000r/min,8极同步转速是750r/min。
这几种速度都只是各种极数电机的同步转速,而非实际转速。
9. 三相异步电动机怎么判断极对数
识别电机的磁极对数方法:
用指针
万用表
的毫安档并到电机的接线端子上,转动电机看指针摆动的次数就可以判断出是几级电机。
普通的单速电机,可以从定子线圈的结构上甄别磁极对数。
双速电机
是通过改变定子绕组的联接方式,来改变电机的磁极对数。是按设计的固定方式,结构很复杂,外表是无法甄别。
数每极每相有多少个槽,再用总槽数除以相数,再除以刚才数的每极每相的槽数,就是极对数,如果算极数,就用算出来的极对数乘以2。
极数的确定:
八极电机就是转子有8个磁极,2p=8,即此电机有4对磁极。一般汽轮发电机多为隐极式电机,极对数很少,一般为1、2对,而n=60f/p,所以他的转速很高,最高可达3000转(工频),而水轮发电机的极数相当多,转子结构为凸极式,工艺比较复杂,由于他的极数很多,所以它的转速很低,可能只有每秒几转 。
若三相交流电的频率为50Hz,则合成磁场的同步转速为50r/s,即3000r/min.如果电动机的旋转磁场不止是一对磁极,进一步分析还可以得到同步转速n与磁场磁极对数p的关系:n=60f/p.f为频率,单位为Hz.n的单位为r/min。
ns与所接交流电的频率 (f)、电机的磁极对数(P)之间有严格的关系 ns=f/P。
同步电动机的转速=60*频率/ 极对数(我国工频为50Hz)。
异步电动机转速=(60*频率/ 极对数)×(1-s) s:转差率,用来表示转子转速n与磁场转速n0相差的程度的物理量。
另外,同等功率的电动机,转速越大,输出扭矩越小。
10. 三相异步电动机极对数怎么看
6对。极对数是定子产生的磁场NS为一对极对数。
计算A=60F/S A为极对数F为交流电频率S为电机转速,但不是转速决定极数,而是极数决定转速。一般为1,2,4,6,8,12,16,24,0。
三相交流电机每组线圈都会产生N、S磁极,每个电机每相含有的磁极个数就是极数。由于磁极是成对出现的,所以电机有2、4、6、8……极之分。
n=60f/p n: 电机转速 60: 60秒 f: 我国电流采用50Hz p: 电机极对数
1对极对数电机转速:3000转/分;2对极对数电机转速:60×50/2=1500转/分
在输出功率不变的情况下,电机的极对数越多,电机的转速就越低,但它的扭矩就越大。所以在选用电机时,考虑负载需要多大的起动扭矩。
电动机同步转速公式如下: n=60f/p.
f为频率,单位为Hz.
n为转速,其单位为r/min
p为磁极对数(注意是磁极对数而非磁极的个数,如2极电机p=1)
由于在中国三相交流电的频率为50Hz,因此2极同步转速是3000r/min,4极同步转速是1500r/min,6极同步转速是1000r/min,8极同步转速是750r/min。这几种速度都只是各种极数电机的同步转速,而非实际转速。
11. 三相异步电机极对数怎么看
电动车电机极对数应该无需设置,因为电动车电机并非交流异步电动机,该电机调速是靠电位器无极调速华,因此这类电机无极对数可言等。