一、直流电动机的换向器工作原理
换向器与电刷一起才能实现换向。换向器和绕组元件两端固定连接与电枢绕组一起旋转,电刷与换向器滑动连接,电刷本身位置固定。
绕组导体交替处于NS极下,不断变换导体电流方向;而电刷总是与同一个极下的导体接触,因此引出的电流方向不变(发电机) 。
同理,你可以自行分析电动机换向器和电刷工作原理。
二、直流电动机的换向器作用
换向器在电动机中起了两个作用:
1、电机转子是转动的,不可能用固定的连线,把电源导入转子线圈,所以,要经过碳刷和滑环的滑动接触,把电源电能导入转子线圈中。
2、如果转子线圈中的电流方向始终不变,转子将停在转子线圈的磁极对和定子的磁极对异性相吸引的位置,不再转动,所以,必须在转子转到一定角度时,改变其电流方向,也就是改变转子线圈的磁极方向,使转子能在定子磁力作用下继续往前转动。按一定角度设在滑环上的接触片,随着转动不停的交替接触固定的碳刷电极,及时完成了转子线圈中电流方向的转换。电动机和什么比的优点?
三、直流电机换向器
换向器的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。 电刷上不加直流电压,用原动机拖动电枢使之逆时针方向恒速转动,线圈两边就分别切割不同极性磁极下的磁力线,而在其中感应产生电动势,电动势方向按右手定则确定。这种电磁情况表示在图上。由于电枢连续地旋转,,因此,必须使载流导体在磁场中所受到线圈边ab和cd交替地切割N极和S极下的磁力线,虽然每个线圈边和整个线圈中的感应电动势的方向是交变的.线圈内的感应电动势是一种交变电动势,而在电刷A,B端的电动势却为直流电动势(说得确切一些,是一种方向不变的脉振电动势)。因为,电枢在转动过程中,无论电枢转到什么位置,由于换向器配合电刷的换向作用,电刷A通过换向片所引出的电动势始终是切割N极磁力线的线圈边中的电动势,因此,电刷A始终有正极性。同样道理,电刷B始终有负极性,所以电刷端能引出方向不变的但大小变化的脉振电动势。如每极下的线圈数增多,可使脉振程度减小,就可获得直流电动势。这就是直流发电机的工作原理。同时也说明子直流发电机实质上是带有换向器的交流发电机。
从基本电磁情况来看,一台直流电机原则上既可工作为电动机运行,也可以作为发电机运行,只是约束的条件不同而已。在直流电机的两电刷端上,加上直流电压,将电能输入电枢,机械能从电机轴上输出,拖动生产机械,将电能转换成机械能而成为电动机,如用原动机拖动直流电机的电枢,而电刷上不加直流电压,则电刷端可以引出直流电动势作为直流电源,可输出电能,电机将机械能转换成电能而成为发电机。同一台电机,能作电动机或作发电机运行的这种原理.在电机理论中称为可逆原理。
四、直流电机正反转控制
(1)若手动控制,可采用机械开关实现电机正反转,一个双刀双掷开关就可以搞定,接线简单,接线方法如下:
当开关往上拨时,直流电机A极接VCC,B极接GND,电机正转(反转);
当开关往下拨时,直流电机B极接VCC,A极接GND,电机反转(正转)。
(2)使用一个双路的继电器实现直流电机正反转,其原理和方法1类似,其不同的是采用继电器作为开关,可以实现编程自动控制。
当继电器不工作时,直流电机A极接VCC,B极接GND,电机正转(反转);
当继电器接通时,直流电机B极接VCC,A极接GND,电机反转(正转)
五、直流电机调速器
西门子直流调速器6RA70报故障代码F040,检测电源电压是否正常,开机按P复位看是否可以消除,如果不能检测控制板或者更换。 直流调速器是一种电机调速装置,包括电机直流调速器、脉宽直流调速器、可控硅直流调速器等,一般为模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID适配器调整。具有体积小、重量轻等特点,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。 直流调速器就是调节直流电动机速度的设备,由于直流电动机具有低转速大力矩的特点,是交流电动机无法取代的,因此调节直流电动机速度的设备——直流调速器具有广阔的应用天地。 适用场合 下列场合需要使用直流调速器:
1.需要较宽的调速范围;
2.需要较快的动态响应过程;
3.加、减速时需要自动平滑的过度过程;
4.需要低速运转时力矩大;
5.需要较好的挖土机特性,能将过载电流自动限制在设定电流上。 以上五点也是直流调速器的应用特点。