直流电动机原理简易图(直流电机工作原理简图

鑫锐电气 2023-01-01 08:24 编辑:admin 293阅读

1. 直流电机工作原理简图

  1、电动势平衡方程式:

  A、不计磁路饱和效应,并励电动机电枢回路和励磁回路的电势方程式:

  

  B、并励发电机电势方程式:

  

发电机的大于。

  2、转矩平衡方程式:

  

  

  3、功率方程式:

  A、直流电机中的损耗、效率:

  损耗有三类:

消耗于导体电阻中。

消耗于摩擦损耗、通风和机械损耗。

消耗于铁心中的损耗。

铁耗:由于电枢旋转时主磁通在电枢铁心内交变而引起的。  

铜耗:

电枢回路铜耗  

励磁回路铜耗

电刷接触铜耗 ,为一对电刷总接触电压降。机械损耗:包括轴承摩擦损耗、电刷摩擦损耗、定转子和空气的摩擦损耗。附加损耗:电枢齿、槽存在,使气隙磁通产生脉动,电枢反应使磁场畸变引起的铁耗。换向电流引起的损耗。

  按额定容量的1%计算,无补偿绕组按额定容量的0.5%计算,有补偿绕组在以上损耗中,,随负载变化而变化,称为可变损耗;,,为不变损耗。

  电机的效率:

  当不变损耗=可变损耗时,取得最大,是的二次曲线。

  B、并励电动机的功率方程式:

  

  

  C、并励发电机的功率方程式:

  

2. 直流电机工作原理简图图片

直流电机的导体受力的方向用左手定则确定,这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。

2/3

当电枢转了180°后,导体直流电机cd转到N极下,导体ab转到S极下时,由于直流电源供给的电流方向不变,仍从电刷直流电机A流入,经导体cd直流电机、ab直流电机后,从电刷B流出。这时导体cd直流电机受力方向变为从右向左,导体ab直流电机受力方向是从左向右,产生的电磁转矩的方向仍为逆时针方向。

3/3

因此,电枢一经转动,由于换向器配合电刷对电流的换向作用,直流电流交替地由导体直流电机ab和cd直流电机流入,使线圈边只要处于N直流电机极下,其中通过电流的方向总是由电刷A直流电机流入的方向,而在S直流电机极下时,总是从电刷直流电机B流出的方向。这就保证了每个极下线圈边中的电流始终是一个方向,从而形成一种方向不变的转矩,使电动机能连续地旋转。

3. 直流电电机的工作原理

答:在直流电源电路上加电容,再接入电动车电机。可以驱动电动车。

4. 直流电机的构造及原理图解

工作特性:电动机输入电源----电流在定子与转子之间产生电磁感应-----电磁同极排斥-----推动转子(定子是固定的)------转动做功-----传动带动其它设备. 机械特性:电动机的转速n 随转矩T而变化的特性【n=f(T)】称为机械特性。 调速 从直流电动机的电枢回路看,电源电压U与电动机的反电动势Eа和电枢电流Zа在电枢回路电阻Rа上的电压降必须平衡。即U=Ed+IdRd   反电动势又与电动机的转速n和磁通φ有关,电枢电流又与机械转矩M和磁通φ有关。即 z4系列直流电动机   Ed=Cφn   M=CφId式中C   为常数。由此可得式中n0为空载转速,k 为Rа/C2。以上是未考虑铁心饱和等因素时的理想关系,但对实际直流电动机的分析也有指导意义。由上可见直流电动机有3种调速方法:调节励磁电流、调节电枢端电压和调节串入电枢回路的电阻。调节电枢回路串联电阻的办法比较简便,但能耗较大;   z4系列直流电动机 且在轻负载时,由于负载电流小,串联电阻上电压降小,故转速调节很不灵敏。调节电枢端电压并适当调节励磁电流,可以使直流电动机在宽范围内平滑地调速。端电压加大使转速升高,励磁电流加大使转速降低,二者配合得当,可使电机在不同转速下运行。调速中应注意高速运行时,换向条件恶化,低速运行时冷却条件变坏,从而限制了电动机的功率。串励直流电动机由于它的机械特性(图2)接近恒功率特性,低速时转矩大,故广泛用于电动车辆牵引,在电车中常用两台或两台以上既有串励又有并励的复励直流电动机共同驱动。利用串、并联改接的方法使电机端电压成倍地变化(串联时电动机端电压只有并联时的一半),从而可经济地获得更大范围的调速和减少起动时的电能消耗。

5. 直流电机工作原理图解

直流无刷电机的工作原理

答案:电机将供应的电能转换为机械能。常用的电机类型很多,其中,无刷直流电机(BLDC)因为高效率及优异的可控性,而广泛用于各种应用中。相对于其他类型的电机,BLDC电机具有省电的优势。

当工程师面临设计电气设备以执行机械工作的挑战时,可能会思考如何将电信号转换为动能。而驱动器及电机就是能将电信号转换为运动的装置,使加诸于电机上的电能转换为机械能。

直流无刷电机(简称为 BLDC 电机)——虽然挂着“直流”的名号——实际上是一种三相电流同步电机:转子跟随旋转磁场运转,其运动与施加在绕组上的交流电压同步。这种电机类型之所以通常被称为“无刷直流电机”是因为,在许多应用中,该电机可以替换有刷直流电机(有刷直流或换向器式电机)。在有刷直流电机中,施加直流电压后,电机中的机械逆变器(电刷)会产生与转速无关的交流电。

配合电子驱动控制器(取代电刷的功能并将馈入的直流电转换为交流电),BLDC 电机可以实现与有刷直流电机相当的性能,而无需使用寿命有限的电刷。因此,BLDC 电机也被称为 EC(电子换向)电机,以便与包含电刷的机械换向电机进行区分。另外一个经常使用的术语是 PMSM,其中文全称是“永久磁铁型同步电机”。这里的“永久磁铁”用于与其他同步电机进行区分:其他同步电机依靠转子上的励磁绕组运转,而 BLDC 则处于永久励磁状态。换而言之,即使不给定子通电,电机转子也会通过永久磁铁产生磁场。

为了用于区分带有正弦感应电压(反电动势)的 PMSM 电机和带梯形感应电压的 BLDC 电机(见下文),PMSM 和 BLDC 这两个术语通常会并列出现。现在的大多数 BLDC 电机都具有正弦反电动势。

6. 直流电机原理示意图

直流电机是根据通电流的导体在磁场中会受力的原理来工作的。既电工基础中的左手定则。电动机的转子上绕有线圈,通入电流,定子作为磁场线圈也通入电流,产生定子磁场,通电流的转子线圈在定子磁场中,就会产生电动力,推动转子旋转。转子电流是通过整流子上的碳刷连接到直流电源的。

扩展知识:

直流电机(direct current machine)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。

7. 直流电机工作原理简图图解

直流电机是根据通电流的导体在磁场中会受力的原理来工作的。既电工基础中的左手定则。

电动机的转子上绕有线圈,通入电流,定子作为磁场线圈也通入电流,产生定子磁场,通电流的转子线圈在定子磁场中,就会产生电动力,推动转子旋转。

转子电流是通过整流子上的碳刷连接到直流电源的。直流电动机是将直流电能转换为机械能的电动机。因其良好的调速性能而在电力拖动中得到广泛应用。

8. 直流电动机的工作原理图解

交流电。发电机的原理:电机内的线圈旋转时切割磁场,只能来回切割正向磁场和反向磁场,即从N到S极的磁力线和从S到N的磁力线,所以在电机线圈内产生的电流,也会有两个方向,这就是交流电,但因为发电机在电机电刷输出处有一个换向片,把不同方向的交流电转化成了单一方向的直流电.另外,直流发电机和交流发电机的发电线圈工作原理非常相似,而且线圈本身发出的电都是交流的,不同的是从线圈向外输出的过程,交流发电机的线圈两端直接连接在两个独立铜环上很直接向外输出,直流发电机的线圈两端连接换向器,和直流电动机的换向器原理相同,它能够在线圈电压变化的瞬间准确地改变导线连接,从而输出波动直流电,直流电动机可以直接用作直流发电机。

9. 直流电机的工作原理图

直流电机工作原理图

影响微型直流电机性能的主要因素

主要有两点,一是输入电压,另外一个是温度;简单来说,电压调节不要超出额定工作电压范围;如微型电机的温度过高会烧毁电机,除环境因素外,电压过高也会导致电机温度过高。

微型直流电机性能曲线

1、空载转速(No):微型电机在额定电压下无负载运行时的测得的转速,单位为RPM(转每分钟);

2、空载电流(Io):微型电机在额定电压下无负载运行时,在电机两端子间测得的输入 电流,单位A(安倍);

3、堵转电流(Is):微型电机在额定电压下运行,因负载导致电机停转时瞬间测得的电流,单位A(安倍);

4、堵转扭矩(Ts):微型电机在额定电压下运行,因负载导致电机停转时瞬间测得的最大转矩,单位gf.cm(克.厘米);

微型直流电机的性能曲线以输出转矩为横坐标,以转速、电流、效率及转出功率为纵坐标,相应的曲线:转速曲线N、电流曲线I、效率曲线N、输出功率曲线P,如下图所示:

微型电机性能曲线

微型直流电机产生的扭矩与转速是相互影响的,这是直流电机的基本特性,转速与扭矩呈线性关系。这常用作计算空载转速和起动扭矩。

扭矩与转速

转速与功率

微型直流电机另外一个重要特性是扭矩与电流的关系,电流和电机扭矩呈线性关系,用来计算空载电流和转子静止时的电流(起动电流)如图。

扭矩与电流关系图

微型直流电机效率

效率=机械输出功率÷电机输入功率,输出功率和输入功率随着转速的变化而变化,给定的转速大于空载速度的50%时可获得最大效率。

齿轮减速与行星减速

减速传动效率:微型电机配置减速箱以后输出转矩的效率大小受轴承、齿轮的摩擦力以及润滑条件的影响。经过一级传动的齿轮减速箱效率为90%,二级传动的效率是81%,减速比越大,其传动级数越多,其传动效率就越低。

减速电机明显提升负载能力,一般齿轮减速器的减速比1:200,行星齿轮减速箱的减速比可达到1:4500。

附录:

(表一)微型直流减速电机类型性能对比:

表一

(表二)力矩单位制:

表二

10. 直流电机电路原理图

直流电动机的主要组成部分:.转子,定子,线圈;换向器 用电磁继电器可以用低电压,弱电流控制高电压,强电流的工作电路,还可以实现(远距离的操纵)和 (自动控制)