1. 他励直流电动机工作原理
工作原理
注:根据DMD ISOLATE(电流给定值)参数使用数字I/P3,在电流控制或速度控制(默认)之间选择。如果允许调速换器,作为一个电流控制器,如果禁止(默认),就作为一个速度控制器。
电流环
电流环从速度环,或直接从设备接受需求,并形成误差信号,它是需要与平均反馈值之间的差值。误差信号被馈送到比例+积分调节器,它产生电流环的输出,即点火信号。
在调速器中,以两种不同的形式生成误差信号:
1、平均误差计算是需求与平均反馈值之间的差值,并被馈送到P+1算法的积分部分;
2、瞬时计算误差为需求与瞬时反馈值之间的差值.这一误差被馈送到P+1算法的比例部分,给出较高的瞬时性能,因为与平均值不同,不含有任何时间滞后.而平均值含有电源周期1/6的固有滞后.但平均值是转矩的真实量度;而转矩是电流控制的目的,而且在达到零稳态误差中,不受很小的时间滞后的影响。
点火信号转换为电源过零点的一段时间滞后(通过锁相环取得),并且生成点火发指令,在稳态下,每1/6电源周期向晶闸管组件发一次。
以下分开讨论电源控制器的一些特殊特点:
自适应电流控制
晶闸管6脉冲整流器的增益(整个触发角范围内的电压一时间区域),在电枢电流不连续处急剧下降。这是用自适应算法处理,是电流在不连续工作区域内以一步(触发)之差跟踪电流需求.
反电动势(BEMF)的估算
电机静止时,零电流的触发角是120度.在电机以不同的速度旋转时,零电流的触发角沿余弦轨迹移动。
如果要使电流环的带宽,在电流从主桥向副桥(反之亦然)反向过程中,保持在尽可能高水平,就必须尽可能紧密地跟踪这一轨迹.
在电流反向时,带宽损失有两种原因.
首先,整流器增益损耗,须以精确的方法补偿,这是自适应算法的目的.
其次, 上述算法也依赖下一个工作桥中触发角的精确初始值,以把“死区时间”(见下述的零电流时间间隔)和上 到所需电流要求的时间减少到最小程度。
.
要得到精确的触发初始值,必须知道工作反电动势。在调速器中,是通过硬件峰值电流监测器和相应的软件算法结合起来得到的。
桥转换延迟
桥转换“死区时间”,即零电流时间间隔,是可编程的,从1到1500(通过“保留专用菜单”),系统预设值为1毫秒。
“死区时间”可是设定为1/6主电流周期的倍数,其数值为1到6,即最大值为6 3.33=20毫秒(50赫之下)。这与使用大功率换流器有关;在这种换流器中,留有较多的,使电流被吸收掉以便换向。还与电枢电感很大的电机也有关系。在这种电机中,零电流检测是较灵敏的,所以在桥转换延时中有一延时“保险系数”以利换向。
对于7到1500的数值,延时相当于7 1.33微秒到1500 1.33微秒=2毫秒(最大值)
手动调谐
注: 如果可能使用自动调谐的话,这个程几乎很少使用或被要求。
当自动调谐有两个限制时,可能需要执行一个手动调谐:
1、 自动调谐要求励磁线圈关断,所以,当自动调谐永磁电动机或具有较高 磁的他激电机时,轴要求夹紧;
2、 自动调谐的第一部分确定了不连续到连续的边界电平,也就是,平均值在电枢电流恰好变为连续处的。自动禁止励磁,慢慢地提高触发角,直到电流包络线的 率实质性改变,指示出连续的运行区域为止。
自动调谐的第二部分,在第一部分确定的连续的区域内,在电流要求中施加阶跃变化。当电流反馈在1到2步接近最终的设定值时,自动调谐功能中止,“励磁使能”返回到它的初始状态。然后保留P&I增益和不连续的边界电流值。如果边界电流值(第一部分)很高,也就是说大于150%,那么,自动调谐第二部分的阶跃变化,要在200%以上的范围内,这可能造成过电流跳闸。在这种情况下,可取的办法是,设定I增益为足够大的数值(典型为10),以便在整个不连续区域能快速响应;P增益设定较低的数值(典型为1,不重要,因在不连续区内没有有效电枢时间常数要补偿);最后设定“不连续”为零,消除自适应方式。但同时必须使“丢失脉冲报警”禁止;负载电流在“不连续”水平以上时,会激发报警,而且,如仍处于启动状态,会造成误跳闸。为使报警禁止,须输入保留给Eurotherm公司人员的“特密口令”。其次,在“保留”的菜单中,它以“系统”分菜单的形式出现,称为“Health Inhibit”(正常禁止)的参数应设定为十六进制0×0002。
上述建议是假设在连续区内,即上例中150%以上,电流极限会阻止电机运行。如不是这样,例如电流极限设定在200%时,须进行“手动”调谐。
必须通过以下步骤,把“不连续”参数设定为正确值。使励磁禁止或使之断开,设定电流极限为零,并启动驱动装置。逐渐提高电流极限,同时从示波器上观察电流反馈波形(见以下诊断部分)。在脉冲之间没有零间隔,而又“一齐出现”
时,读起这一电流极限值(或电流需求),并设定“不连续参数为着一数值。如着一数值很高(在电流极限之上)。那么应设定为零,并遵照上述2中的建议。在这中情况下,调速器不执行自适应功能(在不连续区内),所以在电流环的响应中回发现性能受到损失。
随后
● 向电流要求输入端(A3)施加矩形波,并使电流要求隔离端(C8)为NO;
● 或向接受端(A6)“转换”输入两个电流极限值,拧以正常的速度环方式运转。
理想的方法是,是这一输入信号偏置在“不连续”水平之上,以使调速器在连续电流区运转。
然后可以增加I增益值,以便快速上升,但过冲不能超过10%,以后可增加P增益到极限阻尼响应,即实际上没有过冲。
电流环控制不正确设置,I时间 电流环控制不正确设置,P 增益太小
常数太短,提高了电流环I时间 —提高了电流环P增益。
常数。
电流环响应正确调整
调协要点
如I增益过高,响应就会欠阻尼,(过冲太大,而且长时间振荡才能稳定)。
如I增益太低,响应就会过阻尼(长时间指数上升)。
在I增益设定在最佳值时,如P增益太低,响应会过阻尼。同样,如P增益太高,
响应也会恢复到欠阻尼,趋向完全不稳定。
诊断
“实际”电枢电流诊断点,是校正板下第一个(左侧)检测点。在100%电流时,给出
1.1伏平均值。其极性也指示工作,即,对主桥(正电流要求)它为负;对副桥(负电流
要求)它为正。
速度环
速度环从外部回路(即位置环)接受需求,或直接从设备接受,并形成误差信号,这是需求如反馈的差值。误差信号被馈送到比例+积分补偿器,后者产生速度环输出,即电流需求信号。
积分增益在人机接口处被转换成时间常数(秒),能相对于某一负载时间常数,较明确规定补偿器的功能。
速度环与电流环同步
P+I算法的比例部分,在电流环的每次运行前便立即执行,因此保证有最小的时间滞后,并有最大的带宽。
模拟测速仪和编码器的组合反馈
在P+I的比例部分使用模拟测速反馈,在积分部分使用编码器反馈(用电流环类似的原理),因此调速器把最大的瞬间响应与数字反馈的高稳态精度结合起来。
电流需求率极限(di/dt)
访问“保留”菜单的di/dt极限,现在仅保留给Eutotherm公司人员。
这是施加在电流需求变化率上的极限,用于有整流限制和不能吸收快速转矩瞬态机械系统的电机,也用作对电流摆幅(0-200%)限制电流过冲的手段。系统预设值为35%(即最大允许变化是1/6电流周期中满载电流的35%),在0到100%范围内,实际上对电流响应没有实际影响。
励磁控制
设定
电流控制器P+I增益的设定,是用前述同样方法手动完成的,见第四章:“电流环-手动调谐”中所描述的。还有一种方便的方法,是从“中断”方式到“备用”方式来回转换几次,并观察在电流响应0-50%的变化中上升时间和过冲。削弱励磁增益的设定,是观察电枢电压反馈对过冲和稳定时间的变化而完成的。“电动势增益”参数,系统预设为0.30(有效增益为30),而且一般变化在0.20到0.70的范围内(较大的设定值一般要引起不稳定)。“电动势超前”参数应设定在励磁电流回路的时间常数附近。系统预设为2.00(200毫秒)。最后“电动势滞后”系统预设为40.00(400毫秒),一般应在“电动势超前”的10到50倍的范围内。
调谐削弱磁场回路,也取决于通过基速的的加速率,反之亦然,如电枢电压过冲,是快速加速率的问题,那么,建议使用“反馈超前/滞后”补偿限制过冲,见上边的讨论。如不是这一问题,那么建议使用上述反电动势反馈增益的系统预设值(即禁止);这样,对较快的励磁响应,有可能在正向进一步提高传递函数增益(“电动势增益”和“电动势超前”)。
总之,在较高频率下提高衰减会引起增益增加,同时保持所需的相位余量,记住,补偿器的负角、降低角曲线,要保持所需的相位余量(45~60度),须降低相位余量频率。这是对数值曲线过0分贝线的频率。因为相位余量频率具有表示系统响应速度的特征,所以应该降低到最小值。把T1设定在大于100毫秒的地方,使角频率1/T1保持在尽可能低的数值,便能达到上述目的。T1的上限收稳定时间要求的支配。
电流控制
励磁电流回路可直接接受来自设备和外部削弱磁场回路的要求,并形成误差信
号,这是给定与反馈的差值。误差信号被馈送至P+I补偿器,后者产生励磁回路输出,即励磁触发角信号。
触发角信号被转换成距电源过零点的时间延迟(通过用于电枢的同一个锁相环取得),并生成触发指令,在稳态每1/2电源周期向励磁桥发送一个指令。
电压控制
这铭牌上不指定励磁电流定额的电机,提供一种开环电压控制功能。励磁电压使按规定的“输出输入比率”控制,系统预设为90%。这是在单相整流电路中,对指定的交流均方根输入能获得的最大直流电压,即415伏交流电源为直流370伏。这一指定的比率,直接确定控制器工作的触发角,所以 不补偿励磁电阻的热效应,和电源电压变化。还有一点要值得注意的,用这种方式,励磁过电流报警是无效的(因无电流换算),所以这种方式不推广用于比励磁电压额定值大得太多的电源。
弱磁控制
弱磁回路接受“MAX VOLTS”(最大电压)(系统预设为100%)作为需求,所形成的误差信号为给定电压与反馈电压之差,误差信号馈入超前/滞后补偿器产生弱磁回路输出,即,从励磁设定点(系统预设为100%渐趋以产生利息需求的励磁电流回路,电枢反馈电压,便得出对励磁电流回路的励磁要求。“min fld current”(最小励磁电流)参数(系统预设为10%),限制削弱磁场范围内的最小电平。
超前/滞后补偿器有一直流增益(“电动势增益”=kp)、一超前时间常数(“电动势超前”=T1)和一滞后时间常数(“电动势滞后”=T2)。
注:当以电枢电压反馈运行时削弱磁场是不可能的。尽管在此情况下,削弱磁场能被允许,但是一个软件联锁把励磁需求钳制在100%,不允许削弱磁场去减小它。
超前/滞后
超前/滞后{传输函数=KP×(1+ST1)/(1+ST2)}与P+I{传输函数=KP×(1+ST)/ST}相比,有一小小缺点,即直流增益不是“无限”的,所以有一“限定”稳态误差。对于“电动势增益”值>0.20(实际值为20)的范围,这一误差保持在十分小的程度。
超前/滞后的优点是,它允许在较高的频率有较大的衰减。高频增益为KpT1/T2,所以,保持较高的T2/T1比率(一般为10以上),对1/T1之上的频率,对数值按20log(T2/T1)降低。
为了把过冲电压减小到最小程度,在电枢电压反馈回路中增加了一个附加的反馈超前/滞后补偿器。在通过基速快速加速,从而以较快的速率增加反电动势时,这一补偿器特别有用:因为在这种情况下,由于励磁时间常数一般取得较大,励磁电流不可能减弱。“bemf fbk lead”/“bemf fbk lag”(“反向电动势反馈超前”/“反向电动势反馈滞后”)的比率,总应大于1,以便能超前作用,使励磁提前开始减弱,但我们不提倡把这一比率提高到比2~3倍大得太多,否则就会产生不稳定。上述参数以毫秒为单位的绝对设定值,取决于总的励磁时间常数。系统预设为1(100毫秒/100毫秒),这意味着这一功能被禁止。
2. 他励直流电机的工作原理
直流电动机的机械特性分固有机械特性和人为机械特性两种。
当直流电动机拖动生产机械运转时,作为输出机械功率的电动机,其主要特性表现在转速和转矩的关系上,即机械特性 n = f(T)。特性方程为
(r/min)
由于电磁转矩 ,故可得用电流表示的机械特性方程为
(r/min)
1.固有机械特性
当电枢电路中没有串入附加电阻,电动机的工作电压和磁通均为额定值时的机械特性,称为固有机械特性。
2.人为机械特性
人为改变电路参数或电源参数而得到的机械特性称为人为机械特性。人为机械特性可分为三种情况:
(1)电枢回路中串入电阻的机械特性 电源电压和磁通均为额定值,在电枢回路中串入一定的附加电阻RC。
(2)改变电源电压的机械特性 电枢电路中没有串入附加电阻,磁通为额定值,仅改变电源电压(一般为降低电压)。
(3)减弱磁通的机械特性 电源电压为额定值,电枢回路中没有串入附加电阻,仅在励磁回路中串入附加电阻Rf,使磁通 减弱。
3.直流电动机的运行状态
直流电动机的运行状态分为电动运行状态和制动运行状态两种:
(1)直流电动机的电动运行状态 其特点是电动机产生的电磁转矩T与转速n 的方向相同,电磁转矩对电动机的运行为拖动转矩。
(2)直流电动机的制动运行状态 其特点是电动机产生的电磁转矩T与转速n的方向相反,电磁转矩对电动机的运行为制动转矩。直流电动机的制动状态可以用三种方法来实现,即再生制动、能耗制动及反接制动。
①再生制动 电动机处于电动状态运行中,由于某种外加因素,使电动机的转速n 超过理想空载n0,此时磁场极性未变,Ea>U,电枢电流反向,电动机产生的电磁转矩T与转速n 方向相反,成为制动转矩,对电动机的转动起制动作用。这时生产机械拖动电动机发电,把机械能转换为电能,向电网馈送。
②能耗制动 当电动机具有较高转速时,将电枢脱离电源,而与电阻R1串联起来,形成闭合回路,励磁绕组仍接在电源上。此时电动机所产生的电磁转矩T与转速n方向相反,成为制动转矩,对电动机的转动起制动作用。这时电动机由生产机械拖动而发电,将生产机械所储藏的动能转换为电能,输送到电枢回路的电阻上,再转化成热能消耗掉,直至电动机完全停止。
③反接制动 反接制动可分为两种,一种是倒拉反接制动,用于位能性负载,另一种是电源反接制动,一般用于反抗性负载。
(a)倒拉反接制动 在起重装置中,电动机在电动状态下提升重物若在电枢电路中串入较大的电阻,使电动机转入人为机械特性运行,此时电动机的电磁转矩小于负载转矩,电动机便在负载转矩作用下被倒拉而反转,下放重物。电动机产生的电磁转矩T 与转速n的方向相反,成为制动转矩,对电动机的转动起制动作用,稳定下放重物。
(b)电源反接制动 为了使工作机械迅速停车或反转,在电动机正向“运行”时,突然改变电枢两端接线(既改变电枢两端电压极性),由于惯性,电动机仍按原来方向旋转,而电磁转矩则改变了方向,与转速方向相反,反抗电动机的转动,成为制动转矩,电动机的转速迅速地下降,直到n=0。在转速接近于零时,若不及时将电动机电源切断,电动机便会反向起动而反转。
3. 他励直流电动机工作原理图文
他励直流电机转速公式:
n=(U-IR)/Kφ
其中U为电枢端电压,I为电枢电流,R为电枢电路总电阻,φ为每极磁通量,K为电动机结构参数。
负载转矩不变,电枢电流I不变,励磁电流不变,电机磁通不变,K为电动机结构参数也不变,所以,若电枢电压降低一半,那么电机转速也下降一半。
4. 他励直流电机工作原理内部详细各部件
直流电机是根据通电流的导体在磁场中会受力的原理来工作的。既电工基础中的左手定则。电动机的转子上绕有线圈,通入电流,定子作为磁场线圈也通入电流,产生定子磁场,通电流的转子线圈在定子磁场中,就会产生电动力,推动转子旋转。转子电流是通过整流子上的碳刷连接到直流电源的。
直流电动机是将直流电能转换为机械能的电动机。因其良好的调速性能而在电力拖动中得到广泛应用。直流电动机按励磁方式分为永磁、他励和自励3类,其中自励又分为并励、串励和复励3种。
5. 直流他励电动机的工作原理
就两电刷,接直流正负极可以了啊。
永磁式直流电动机,只要将电源正、负极连接方向调换,就可以实现电机反转。
串激式直流电动机,则需要改变定子线圈与碳刷(转子)串联的方向:假定原电机内部接线为
电源进线——定子线圈1端——定子线圈2端——左边碳刷——电枢(转子)——右边碳刷——电源;
要改变转向,就需要改为
电源进线——定子线圈1端——定子线圈2端——右边碳刷——电枢(转子)——左边碳刷——电源;
即将碳刷(或定子线圈)的两端接线对调即可。
串激式直流电机的转向与电源正、负极连接方向无关,实际上可以使用在交流电路。
6. 他励直流电动机的运行原理
直流接触器工作原理
当接触器线圈通电后,线圈电流产生磁场,使静铁心产生电磁吸力吸引动铁心,并带动触点动作:常闭触点断开,常开触点闭合,两者是联动的。当线圈断电时,电磁吸力消失,衔铁在释放弹簧的作用下释放,使触点复原:常开触点断开,常闭触点闭合。与交流接触器工作原理相同,不同之处在于交流接触器的吸引线圈由交流电源供电,直流接触器的吸引线圈由直流电源供电。
接线方法:
1、接触器只有主电源和线圈电源,把线圈电源负极接到线圈一端正极,开关接到另一端,主线端进电机。
2、直流电动机是依靠直流电驱动的电动机。直流电动机的工作原理:当线圈通电后,转子周围产生磁场,转子的左侧被推离左侧的磁铁,并被吸引到右侧,从而产生转动。转子依靠惯性继续转动。当转子运行至水平位置时电流变换器将线圈的电流方向逆转,线圈所产生的磁场亦同时逆转,使这一过程得以重复。
7. 他励直流电动机的工作原理和过程
他励直流电动机的启动方法一般为电枢串电阻启动或降低电柜电压启动。其目的是为了降低启动电流。
他励直流电动机启动时由于电枢感应电动势Ea=CeΦn=0,最初启动电流IS=U/Ra,若直接启动,由于Ra很小,IS会十几倍甚至几十倍于额定电流,无法换向,产生火花,同时也会过热,会烧毁电机,过大的转矩会造成拖动系统损坏,因此不能直接启动。
8. 他励直流电动机工作原理图
1、他励直流电机 励磁绕组与电枢绕组无联接关系,而由其他直流电源对励磁绕组供电的直流电机称为他励直流电机。 2、并励直流电机 作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组与电枢共用同一电源,从性能上讲与他励直流电动机相同。 3、串励直流电机 串励直流电机的励磁绕组与电枢绕组串联后,再接于直流电源,这种直流电机的励磁电流就是电枢电流。 4、复励直流电机 复励直流电机有并励和串励两个励磁绕组,若串励绕组产生的磁通势与并励绕组产生的磁通势方向相同称为积复励。若两个磁通势方向相反,则称为差复励。 不同励磁方式的直流电机有着不同的特性。一般情况直流电动机的主要励磁方式是并励式、串励式和复励式,直流发电机的主要励磁方式是他励式、并励式和和复励式。 特点: 1、直流他励电动机: 励磁绕组与电枢没有电的联系,励磁电路是由另外直流电源供给的。因此励磁电流不受电枢端电压或电枢电流的影响。 2、直流并励电动机:电路并联,分流,并励绕组两端电压就是电枢两端电压,但是励磁 绕组用细导线绕成,其匝数很多,因此具有较大的电阻,使得通过他的励磁电流较小。 3、直流串励电动机:电流串联,分压,励磁绕组是和电枢串联的,所以这种电动机内磁场随着电枢电流的改变有显著的变化。为了使励磁绕组中不致引起大的损耗和电压降,励磁绕组的电阻越小越好,所以直流串励电动机通常用较粗的导线绕成,他的匝数较少。 4、直流复励电动机:电动机的磁通由两个绕组内的励磁电流产生。 扩展资料: 改变直流电动机转动方向: 一是电枢反接法,即保持励磁绕组的端电压极性不变,通过改变电枢绕组端电压的极性使电动机反转; 二是励磁绕组反接法,即保持电枢绕组端电压的极性不变,通过改变励磁绕组端电压的极性使电动机调向。当两者的电压极性同时改变时,则电动机的旋转方向不变。 他励和并励直流电动机一般采用电枢反接法来实现正反转。他励和并励直流电动机不宜采用励磁绕组反接法实现正反转的原因是因为励磁绕组匝数较多,电感量较大。当励磁绕组反接时,在励磁绕组中便会产生很大的感生电动势.这将会损坏闸刀和励磁绕组的绝缘。 串励直流电动机宜采用励磁绕组反接法实现正反转的原因是因为串励直流电动机的电枢两端电压较高,而励磁绕组两端电压很低,反接容易,电动机车常采用此法。
9. 他励直流电机的运行原理
串激(串励)电机就是定子绕组和转子绕组串联的。直流电机按照励磁种类可以分为:串励,并励,复励和他励。串励只是直流电机其中的一种励磁原理没什么区别。这种电机主要用在电动工具中属于交直流两用电机或直流电机中。直流电机串激和并激区别就是这样的。