直流电动机工作时(直流电动机工作时电流方向改

鑫锐电气 2022-12-27 12:08 编辑:admin 243阅读

1. 直流电动机工作时电流方向改变吗

三相交流电机:改变三相交流电的相序就可以换向。直流电机:直流电动机的转动方向有两种方法:1、改变磁场方向。 2、改变电流方向(即改变电源的正负极)。

2. 如何改变直流电机的运转方向

实际应用的电动机的转子用很多组线圈.因此也有很组换向器.换向器也是做在转子轴上的 结构上,换向器是几个接触片围成圆型,分别连接转子上的每个触头,外边连接的两个电极称为电刷与之接触,同时只接触其中的两个。 原理是,当线圈通过电流后,会在永磁铁的作用下,通过吸引和排斥力转动,当它转到和磁铁平衡时,原来通着电的线较对应换向器上的触片就与电刷分离开,而电刷连接到符合产生推动力的那组线圈对应的触片上,这样不停的重复下去,直流电动机就转起来了。

3. 只改变直流电动机的电流方向,直流电动机内线圈的转向

单相电机改变转速方向的方法:

1、 起动绕组和运行绕组一样的单相电动机。

这种电机的起动绕组与运行绕组的电阻值是一样的,就是说电机的起动绕组与运行绕组线径与线圈数完全一致的。这种正反转控制方法简单,不用复杂的转换开关,小容量的只要一个换向开关即可。

2、启动绕组和运行绕组不一样的单相电动机。

为了节约铜线,运行绕组和启动绕组不一样的单相电动机很多,大容量的都是这样的绕组,特点是运行绕组直接接220V电压,启动电容要串接在启动绕组上,理论上来说要反转也比较简单,只需将运行线圈两个头对调或启动线圈两个头对调即可完成逆转。

工作原理

当单相正弦电流通过定子绕组时,电机就会产生一个交变磁场,这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、方向相反的转矩,使得合成转矩为零,所以电机无法旋转。

4. 直流电动机是用什么定期改变线圈中的电流方向

1、他励直流电机 励磁绕组与电枢绕组无联接关系,而由其他直流电源对励磁绕组供电的直流电机称为他励直流电机。

2、并励直流电机 作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组与电枢共用同一电源,从性能上讲与他励直流电动机相同。

3、串励直流电机 串励直流电机的励磁绕组与电枢绕组串联后,再接于直流电源,这种直流电机的励磁电流就是电枢电流。

4、复励直流电机 复励直流电机有并励和串励两个励磁绕组,若串励绕组产生的磁通势与并励绕组产生的磁通势方向相同称为积复励。若两个磁通势方向相反,则称为差复励。 不同励磁方式的直流电机有着不同的特性。一般情况直流电动机的主要励磁方式是并励式、串励式和复励式,直流发电机的主要励磁方式是他励式、并励式和和复励式。 特点: 1、直流他励电动机: 励磁绕组与电枢没有电的联系,励磁电路是由另外直流电源供给的。因此励磁电流不受电枢端电压或电枢电流的影响。 2、直流并励电动机:电路并联,分流,并励绕组两端电压就是电枢两端电压,但是励磁 绕组用细导线绕成,其匝数很多,因此具有较大的电阻,使得通过他的励磁电流较小。 3、直流串励电动机:电流串联,分压,励磁绕组是和电枢串联的,所以这种电动机内磁场随着电枢电流的改变有显著的变化。为了使励磁绕组中不致引起大的损耗和电压降,励磁绕组的电阻越小越好,所以直流串励电动机通常用较粗的导线绕成,他的匝数较少。 4、直流复励电动机:电动机的磁通由两个绕组内的励磁电流产生。

5. 直流电动机利用什么改变电流方向

PWM,由于它的特殊性能、常被用于直流负载回路中、灯具调光或直流电动机调速、HW-1020型调速器、就是利用脉宽调制(PWM)原理制作的马达调速器、PWM调速器。

所谓PWM就是脉宽调制器,通过调制器给电机提供一个具有一定频率的脉冲宽度可调的脉冲电。脉冲宽度越大即占空比越大,提供给电机的平均电压越大,电机转速就高。反之脉冲宽度越小,则占空比越越小。提供给电机的平均电压越小,电机转速就低。

PWM不管是高电平还是低电平时电机都是转动的,电机的转速取决于平均电压。

扩展资料直流电机伺服驱动器的主电结构通常采用H桥,调速大都通过PWM方式,其调制方式大致有双极式、单极式和受限单极式三种。不同的PWM方式下电机的运行特性以及主电回路的开关损耗和安全性各有不同。

无刷直流电机(BrushlessDCMotor,BLDCM)通常采用三相全桥主电路结构,以三相六状态方波控制运行,任一状态下有两只开关管受PWM控制,其PWM调制方式和直流电机的H桥PWM调制很类似,都是同时两只桥臂受控。直流电机调速PWM方式选择要依据技术指标要求。

通常直流伺服控制系统大多采用双极控制,可以保证电机电流的连续性等要求,从而保证电机的快速响应性;对于调速系统,通常电机工作在较高转速、较大负载下,这时可选择单极式,或受限单极式,使主电路不易出现直通故障,工作可靠性高。同时,不同的PWM方式,桥式电路功率器件的损耗、热平衡及续流回馈也不尽相同。

6. 直流发电机电流会改变方向吗

电磁转矩=电磁系数*磁通*电枢电流;也就是说它和电流(即负载)成正比。

额定转矩是电动机在额定电压下的维持连续运转而不烧坏的最大输出机械转矩。(注意最大两字)电磁转矩=负载转矩+空载转矩。如果忽略空载转矩;电磁转矩=负载转矩。

电磁转矩的方向与负载转矩的方向相反;当两者大小一致时,电动机转速恒定。

7. 直流电动机电流方向怎么改变

改变直流电机的电流方向就可以转变转向

想实现直流电机的转向控制,需要设计一个电流换向电路,可以用继电器、三极管、MOS管或者直流电机驱动芯片设计直流电机控制电路。

继电器控制直流电机转向

两个单刀双制的继电器就可以组成直流电机正反转控制电路,SW1和SW2都断开时,直流电机的两个电极都通过继电器的触点连接到GND,直流电机停止转动。

直流电机正转

闭合开关SW1,继电器K3工作,直流电机上方的电极通过继电器K3连接到VCC,电流从上往下流过直流电机,直流电机正转

闭合开关SW2,继电器K4工作,直流电机下方的电极通过继电器K4连接到VCC,电流从下往上流过直流电机,直流电机反转。

如果SW1和SW2都闭合,直流电机的两个电极通过继电器K3和K4都连接到VCC,直流电机停止转动。

三极管或者MOS管控制直流电机转向

两个NPN三极管和两个PNP三极管(或者两个N MOS管和两个P MOS管)可以组成H桥电路(组成电路很像字母“H”),控制直流电机的正、反转。

当H1为低电平,H2为高电平,PWM1为高电平,PWM2为低电平时,Q1和Q4导通,Q2和Q3截止,电流从左往右流过直流电机,实现电机正转。此时通过改变PWM1的占空比还可以控制直流电机的转速。

当H2为低电平,H1为高电平,PWM2为高电平,PWM1为低电平时,Q2和Q3导通,Q1和Q4截止,电流从右往左流过直流电机,实现电机反转。此时通过改变PWM2的占空比还可以控制直流电机的转速。

电机驱动芯片控制直流电机转向

只需要给芯片的控制引脚提供电平信号就可以控制直流电机的转向

其实电机驱动芯片内部也是集成了H桥电路,驱动芯片还集成了过流、过温等保护电路,我们只需要给两个控制引脚信号就可以了,使用起来更加简单,效率更高。

欢迎关注@电子产品设计方案,一起享受分享与学习的乐趣!关注我,成为朋友,一起交流一起学习

记得点赞和评论哦!非常感谢!

8. 改变直流电动机运转方向的方法有

1)因为磁通不变,匝数减少,感应电势减少,所以转速上升;

2)电机的扭矩由外负载决定,因为只是减少匝数,线径没变,所以最大电流不变,故最大扭矩减少;

改变直流电动机转动方向的方法有两种: 一是电枢反接法,即保持励磁绕组的端电压极性不变,通过改变电枢绕组端电压的极性使电动机反转。